DOI QR코드

DOI QR Code

Prussian Blue Analogues for Rechargeable Batteries

프러시안블루 유사체를 활용한 이차전지 연구

  • Kim, Yang Moon (School of Chemical and Biological Engineering, Seoul National University) ;
  • Choi, Seungyeon (School of Chemical and Biological Engineering, Seoul National University) ;
  • Choi, Jang Wook (School of Chemical and Biological Engineering, Seoul National University)
  • 김양문 (서울대학교화학생물공학부) ;
  • 최승연 (서울대학교화학생물공학부) ;
  • 최장욱 (서울대학교화학생물공학부)
  • Received : 2018.11.29
  • Accepted : 2019.02.07
  • Published : 2019.02.28

Abstract

Prussian blue analogues(PBAs) are comprised of cyano-bridged transition metal ions. The wide and unique open-framework structures of the PBAs enable reversible intercalation and deintercalation of various ions such as $Na^+$, $K^+$, $Mg^{2+}$, $Zn^{2+}$, etc. In addition, since PBAs are synthesized through coprecipitation reaction in aqueous solution at room temperature, they are produced economically and environmentally friendly. However, the formation of crystals proceeds rapidly, and defects such as vacancy and crystal water tend to be present in the crystals, thereby affecting key battery performance. Therefore, significant efforts to inhibit defects in PBAs have been made. In the case of vacancy, the reaction rate was controlled at the synthesis stage to reduce the formation of vacancy, and the crystal water was removed by heat treatment under vacuum. In addition, by adding transition metals that do not react within the structure of PBA, the structural instability during the electrochemical reaction was largely alleviated.

JHHHB@_2019_v22n1_13_f0001.png 이미지

Fig. 1. Schematic illustration of the general crystal structure and redox reactions for PBA.

JHHHB@_2019_v22n1_13_f0002.png 이미지

Fig. 2. (a) The synthetic procedure of PBAs consisting of coprecipitation, dissociation, nucleation, and crystal growth. (b) TGA curves measured at a scan rate of 10 °C min-1 from room temperature to 500 °C in N2 atmosphere (conventional coprecipitation-based PBA: RC-Na2CoFe(CN)6, controlled crystallization-based PBA: CC-Na2CoFe(CN)6). (c) The XRD profiles of the RC-Na2CoFe(CN)6 and CC-Na2CoFe(CN)6. (d) Charge/discharge profiles and (e) long-term cycling stability at a rate of 1 C and 5 C, respectively (1 C=130 mA g-1). Reproduced with permission.12) Copyright 2015, John Wiley and Sons.

JHHHB@_2019_v22n1_13_f0003.png 이미지

Fig. 3. (a) The structure of PBMN. (b) The galvanostatic charge–discharge profiles of PBM, PBN and PBMN when measured in the range of 2.0~4.0 V at 10 mA g-1. (c) Cycling performance of PBM, PBN and PBMN when measured in the range of 2.0~4.0 V at 100 mA g-1. Reproduced with permission.16) Copyright 2014, The Royal Society of Chemistry.

JHHHB@_2019_v22n1_13_f0004.png 이미지

Fig. 4. (a) The TGA curves and (b) IR spectra of air-dried and vacuum-dried Na2MnFe(CN)6. The TGA test was conducted at a heating rate of 5 °C min−1 under N2 atmosphere. Ex situ XRD patterns of (c) air-dried and (d) vacuumdried Na2MnFe(CN)6 at different states at the first cycle. (e) Rate capability of the vacuum-dried Na2MnFe(CN)6. (f) Cycling performance of vacuum-dried Na2MnFe(CN)6. Reproduced with permission.17) Copyright 2015, American Chemical Society.

JHHHB@_2019_v22n1_13_f0005.png 이미지

Fig. 5. (a) A schematic mechanism for the removal of coordinated water from RGOPC. (b) The galvanostatic charge–discharge profiles of PB, RGOPC1, RGOPC2 and RGOPC3 when measured in the rage of 2.0~4.0 V at 30 mA g-1. (c) Cycling performance of PB, RGOPC1, RGOPC2 and RGOPC3 when measured in the rage of 2.0~4.0 V at 200 mA g-1. Reproduced with permission.18) Copyright 2015, The Royal Society of Chemistry.

Table 1. Elemental compositions of NaCoFe(CN)6 from controlled crystallization (CC-NaCoHCF) and NaCoFe(CN)6 from conventional coprecipitation reaction (RC-NaCoHCF). Reproduced with permission.12) Copyright 2015, John Wiley and Sons

JHHHB@_2019_v22n1_13_t0001.png 이미지

Table 2. The atom occupation and d-spacing of PB, RGOPC1, RGOPC2 and RGOPC3. Reproduced with permission.18) Copyright 2015, The Royal Society of Chemistry.

JHHHB@_2019_v22n1_13_t0002.png 이미지

Acknowledgement

Supported by : 산업통상자원부, 과학기술정보통신부

References

  1. F. Herren, P. Fischer, A. Ludi, and W. Halg, 'Neutron Diffraction Study of Prussian Blue, $Fe_4[Fe(CN)_6]_3{\cdot}xH_2O$. Location of Water Molecules and Long-Range Magnetic Order', Inorg. Chem., 19, 956 (1980) https://doi.org/10.1021/ic50206a032
  2. H. W. Lee, R. Y. Wang, M. Pasta, S. Woo Lee, N. Liu, and Y. Cui, 'Manganese Hexacyanomanganate Open Framework as a High-Capacity Positive Electrode Material for Sodium-ion Batteries', Nat. Commun., 5, 5280 (2014) https://doi.org/10.1038/ncomms6280
  3. M. Pasta, C. D. Wessells, N. Liu, J. Nelson, M. T. McDowell, R. A. Huggins, M. F. Toney, and Y. Cui, 'Full Open-Framework Batteries for Stationary Energy Storage', Nat. Commun., 5, 3007 (2014) https://doi.org/10.1038/ncomms4007
  4. H. K. Lee, Y.-I. Kim, J.-K. Park, and J. W. Choi, 'Sodium Zinc Hexacyanoferrate with a Well-Defined Open Framework as a Positive Electrode for Sodium Ion Batteries', Chem. Commun., 48, 8416 (2012) https://doi.org/10.1039/c2cc33771a
  5. D. J. Kim, Y. H. Jung, K. K. Bharathi, S. H. Je, D. K. Kim, A. Coskun, and J. W. Choi, 'An Aqueous Sodium Ion Hybrid Battery Incorporating an Organic Compound and a Prussian Blue Derivative', Adv. Energy Mater., 4, 1400133 (2014) https://doi.org/10.1002/aenm.201400133
  6. C. D. Wessells, M. T. McDowell, S. V. Peddada, M. Pasta, R. A. Huggins, and Yi Cui, 'Tunable Reaction Potentials in Open Framework Nanoparticle Battery Electrodes for Grid-Scale Energy Storage', ACS Nano, 6, 1688 (2012) https://doi.org/10.1021/nn204666v
  7. H. J. Lee, J. H. Shin, and J. W. Choi, 'Intercalated Water and Organic Molecules for Electrode Materials of Rechargeable Batteries', Adv. Mater., 30, 1705851 (2018). https://doi.org/10.1002/adma.201705851
  8. J. Qian, C. Wu, Y. Cao, Z. Ma, Y. Huang, X. Ai, and H. Yang, 'Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries', Adv. Energy Mater., 8, 1702619 (2018) https://doi.org/10.1002/aenm.201702619
  9. Y. You, X. Yu, Y. Yin, K.-W. Nam, and Y.-G. Guo, 'Sodium Iron Hexacyanoferrate with High Na Content as a Na-Rich Cathode Material for Na-Ion Batteries', Nano Research, 8, 117 (2014) https://doi.org/10.1007/s12274-014-0588-7
  10. Y. Lu, L. Wang, J. Cheng, and J. B. Goodenough, 'Prussian Blue: a New Framework of Electrode Materials for Sodium Batteries', Chem. Commun., 48, 6544 (2012) https://doi.org/10.1039/c2cc31777j
  11. P. Xiao, J. Song, L. Wang, J. B. Goodenough, and G. Henkelman, 'Theoretical Study of the Structural Evolution of a $Na_2FeMn(CN)_6$ Cathode upon Na Intercalation', Chem. Mater., 27, 3763 (2015) https://doi.org/10.1021/acs.chemmater.5b01132
  12. X. Wu, M. Sun, S. Guo, J. Qian, Y. Liu, Y. Cao, X. Ai, and H. Yang, 'Vacancy-Free Prussian Blue Nanocrystals with High Capacity and Superior Cyclability for Aqueous Sodium-Ion Batteries', ChemNanoMat, 1, 188 (2015) https://doi.org/10.1002/cnma.201500021
  13. X. Wu, W. Deng, J. Qian, Y. Cao, X. Ai, and H. Yang, 'Single-Crystal $FeFe(CN)_6$ Nanoparticles: a High Capacity and High Rate Cathode for Na-Ion Batteries', J. Mater. Chem. A, 1, 10130 (2013) https://doi.org/10.1039/c3ta12036h
  14. Z. Ji, B. Han, H. Liang, C. Zhou, Q. Gao, K. Xia, and J. Wu, 'On the Mechanism of the Improved Operation Voltage of Rhombohedral Nickel Hexacyanoferrate as Cathodes for Sodium-Ion Batteries', ACS Appl. Mater. Interfaces, 8, 33619 (2016). https://doi.org/10.1021/acsami.6b11070
  15. Y. You, X. -L. Wu, Y. -X. Yin, and Y. -G. Guo, 'A Zerostrain Insertion Cathode Material of Nickel Ferricyanide for Sodium-ion Batteries', J. Mater. Chem. A, 1, 14061 (2013) https://doi.org/10.1039/c3ta13223d
  16. D. Yang, J. Xu, X. Z. Liao, Y.-S. He, H. Liu, and Z.-F. Ma, 'Structure Optimization of Prussian Blue Analogue Cathode Materials for Advanced Sodium Ion Batteries', Chem. Commun., 50, 13377 (2014) https://doi.org/10.1039/C4CC05830E
  17. J. Song, L. Wang, Y. Lu, J. Liu, B. Guo, P. Xiao, J. J. Lee, X. Q. Yang, G. Henkelman, and J. B. Goodenough, 'Removal of Interstitial $H_2O$ in Hexacyanometallates for a Superior Cathode of a Sodium-Ion Battery', J. Am. Chem. Soc., 137, 2658 (2015) https://doi.org/10.1021/ja512383b
  18. D. Yang, J. Xu, X. Z. Liao, H. Wang, Y.-S. He, and Z.-F. Ma, 'Prussian Blue without Coordinated Water as a Superior Cathode for Sodium-Ion Batteries', Chem. Commun., 51, 8181 (2015) https://doi.org/10.1039/C5CC01180A
  19. L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, and J. B. Goodenough, 'A Superior Low-Cost Cathode for a Na-Ion Battery', Angew. Chem. Int. Ed., 52, 1964 (2013) https://doi.org/10.1002/anie.201206854
  20. S. Kim, S. Lee, K. W. Nam, J. Shin, S. Y. Lim, W. Cho, K. Suzuki, Y. Oshima, M. Hirayama, R. Kanno, and J. W. Choi, 'On the Mechanism of Crystal Water Insertion during Anomalous Spinel-to-Birnessite Phase Transition', Chem. Mater., 28, 5488 (2016) https://doi.org/10.1021/acs.chemmater.6b02083
  21. J. H. Lee, H. J. Lee, S. H. Choi, J. Shin, S.-Y. Chung, and J. W. Choi, 'Superlattice Formation of Crystal Water in Layered Double Hydroxides for Long-Term and Fast Operation of Aqueous Rechargeable Batteries', Adv. Energy Mater., 8, 1703572 (2018) https://doi.org/10.1002/aenm.201703572
  22. R. Y. Wang, B. Shyam, K. H. Stone, J. N. Weker, M. Pasta, H. - Y. Lee, M. F. Toney, and Y.i cui, 'Reversible Multivalent (Monovalent, Divalent, Trivalent) Ion Insertion in Open Framework Materials', Adv. Energy Mater., 5, 1401869 (2015) https://doi.org/10.1002/aenm.201401869