Electrochemical Nitrogen Reduction Reaction to Ammonia Production at Ambient Condition

상온 상압 조건에서 전기화학적 질소환원반응을 통한 암모니아 생산 연구 동향

  • Lee, Dong-Kyu (Department of Materials Science & Engineering, Chonnam National University) ;
  • Sim, Uk (Department of Materials Science & Engineering, Chonnam National University)
  • 이동규 (전남대학교신소재공학부) ;
  • 심욱 (전남대학교신소재공학부)
  • Received : 2018.11.05
  • Accepted : 2018.12.31
  • Published : 2019.02.28


The reduction of nitrogen to produce ammonia has been attracting much attention as a renewable energy technology. Ammonia is the basis for many fertilizers and is also considered an energy carrier that can power internal combustion engines, diesel engines, gas turbines, and fuel cells. Traditionally, ammonia has been produced through the Haber-Bosch process, in which atmospheric nitrogen combines with hydrogen at high temperature ($350-550^{\circ}C$) and high pressure (150-300 bar). This process consumes 1-2% of current global energy production and relies on fossil fuels as an energy source. Reducing the energy input required for this process will reduce $CO_2$ emissions and the corresponding environmental impact. For this reason, developing electrochemical ammonia-production methods under ambient temperature and pressure conditions should significantly reduce the energy input required to produce ammonia. In this review, we introduce the electrochemical nitrogen reduction reaction at ambient condition. Numerical studies on the electrochemical nitrogen reduction mechanism have been carried out through the computation of density function theory. Electrodes such as nanowires and porous electrodes have been also actively studied for further participation in electrochemical reactions.

JHHHB@_2019_v22n1_1_f0001.png 이미지

Fig 1. Competition of ammonia production with other reduction and hydrogen evolution reaction(Ref.17,18)

JHHHB@_2019_v22n1_1_f0002.png 이미지

Fig 3. The free energy diagrams of NRR on (a) Mo2N (100) and (b) MoO2 (100) surfaces (c) The structures of key intermediates on Mo2N (d) The geometries of adsorbed N2 (*N2) and the N2 reduced by one (H++e-) pair (*NNH) on MoO2. An asterisk (*) denotes a surface site. Color code: Mo, cyan; H, white; O, red; N, blue or purple for highlight(Ref.22)

JHHHB@_2019_v22n1_1_f0003.png 이미지

Fig 2. (a) Possible pathways for the NRR to form ammonia (NH3)(Ref.20) (b-c) Free-energy diagrams for the NRR on the single Mo atom embedded into the MoS2 nanosheet at zero and applied potential (limiting or onset potential) through (b) distal and (c) alternating mechanisms (d) The volcanoes of the HER and NRR limiting (or onset) potentials as a function of the N2H* species adsorption energy(Ref.21)

JHHHB@_2019_v22n1_1_f0004.png 이미지

Fig 4. (a) Schematic illustration for the electrochemical NRR by catalysts of a-Au/CeOx–RGO and c-Au/RGO under ambient conditions (b) Yield of NH3 (red) and Faradaic efficiency (blue) at each given potential(Ref.25) (c) Schematic of electrochemical cell for NRR using hollow gold nanocages. (d) Ammonia yield rate and faradaic efficiency at various potentials in 0.5M LiClO4 at 20°C (e) Geometric models of an Au THH NR and exposed 24{730} facet. The {730} facet is composed of (210) and (310) sub-facets on Au NRs (f) Free energy diagram and alternating hydriding pathway for NRR on Au (210) and Au (310) at equilibrium potential (Ref.26)

JHHHB@_2019_v22n1_1_f0005.png 이미지

Fig 5. (a) Schematic of electrochemical synthesis of NH3 in an anion-exchange-membrane-based electrolyzer (b) NH3 formation reaction rate (left y-axis) and faradaic efficiency(right y-axis)(Ref.28) (c) Schematic view of the electrocatalytic flow reactor for ammonia synthesis using CNTs (d) Faradaic efficiency values of ammonia formation and H2 evolution under different applied voltages(Ref.29) (e) A schematic representation of ethylenediamine (EDA)-based ammonia synthesis (f) Cumulative NH3 production during the potentiostatic electrolysis with the supply of Ar or N2 at a cell voltage of 1.8V(Ref.30)

JHHHB@_2019_v22n1_1_f0006.png 이미지

Fig 6. (a) Schematic reaction cell for the NRR. (b) Average NH3 yields and faradaic efficiencies of VN/CC at different potentials.(Ref.31) (c) Schematic diagram for electrocatalytic NRR. (d) NH3 yields and Fes at each given potential.(Ref.22) (e) Proposed reaction pathway for nitrogen reduction on the surface of VN0.7O0.45 via a Mars–van Krevelen mechanism and the catalyst deactivation mechanism(Ref.32)

JHHHB@_2019_v22n1_1_f0007.png 이미지

Fig 7. (a) Schematic illustration of NRR using N-doped porous carbon(NPC) (b) Ammonia production rates and current efficiency of NPC-750 during 10 consecutive cycles at -0.9V(Ref.33) (c) Illustration of the fabrication of BVC‐A and BVC‐C NRR electrocatalysts. (d) Yield of NH3 (blue–green) and Faradaic efficiency (red) at each given potential (e) yield of NH3 with different catalysts at -0.2 V versus RHE.(Ref.34)

JHHHB@_2019_v22n1_1_f0008.png 이미지

Fig 8. (a) Schematic diagram of the cell. (b) Yield of ammonia over 24h obtained on different substrates: (i) Ptype silicon, (ii) bSi, (iii) GNP/bSi, (iv) GNP/bSi/Cr and (v) Au/Si/Cr after illumination with two suns and (vi) GNP/bSi/Cr in dark(Ref.58) (c) Proposed Photocatalytic Cycle for N2 Fixation on the Rutile TiO2 (110) Surface (d) Change in the amount of NH3 formed and the SCC efficiency under simulated AM1.5G sunlight irradiation (1-sun)(Ref.59)

JHHHB@_2019_v22n1_1_f0009.png 이미지

Fig 9. (a) Scheme of BiOBr nanosheet for nitrogen reduction photocatalyst (b) Schematic illustration of the photocatalytic N2 fixation model in which water serves as both the solvent and proton source. (c) Quantitative determination of the generated NH3 under visible light (λ > 420 nm) (Ref. 61)

JHHHB@_2019_v22n1_1_f0010.png 이미지

Fig 10. (a) schematic of g-C3N4 and V-g-C3N4 (b) The concentration of generated NH4+ in different systems (c) photocatalytic N2 fixation rate of g-C3N4 and V-g-C3N4 (Ref.62)

Table 1. The list of catalyst of nitrogen reduction reaction at ambient condition

JHHHB@_2019_v22n1_1_t0001.png 이미지

Table 1. Continued.

JHHHB@_2019_v22n1_1_t0002.png 이미지


Supported by : 전남대학교


  1. C. Zamfirescu and I. Dincer, 'Ammonia as a green fuel and hydrogen source for vehicular applications' 90, 729-737 (2009).
  2. R. Lan and S. Tao, 'Ammonia as a Suitable Fuel for Fuel Cells' 2 (2014).
  3. S. Giddey, S. P. S. Badwal, C. Munnings and M. Dolan, 'Ammonia as a Renewable Energy Transportation Media' American Chemical Society, 5 10231-10239 (2017).
  4. F. Haber, 'The synthesis of ammonia from its elements. Nobel Prize Lecture 1918' (1920).
  5. K. Tamaru, 'The History of the Development of Ammonia Synthesis' Springer US, 1-18 (1991).
  6. J. M. Modak, 'Haber process for ammonia synthesis' 769-77 (2002).
  7. M. Appl, 'Ammonia' Wiley-VCH, (2006).
  8. T. Murakami, T. Nohira, Y. H. Ogata and Y. Ito, 'Electrolytic Ammonia Synthesis in Molten Salts under Atmospheric Pressure Using Methane as a Hydrogen Source' 8 D12-D14 (2005).
  9. B. H. Wang, J. D. Wang, R. Liu, Y. H. Xie and Z. J. J. J. o. S. S. E. Li, 'Synthesis of ammonia from natural gas at atmospheric pressure with doped ceria-Ca3(PO4)2-K3PO4 composite electrolyte and its proton conductivity at intermediate temperature' 11 27-31 (2007).
  10. R.-Q. Liu, Y.-H. Xie, J.-D. Wang, Z.-J. Li and B.-H. Wang, 'Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2-${\delta}$ (M=La, Y, Gd, Sm) and their proton conduction at intermediate temperature' 177 73-76 (2006).
  11. C. Guo, J. Ran, A. Vasileff and S.-Z. Qiao, 'Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions' The Royal Society of Chemistry, 11 45-56 (2018).
  12. Y. Abghoui and E. Skulasson, 'Transition Metal Nitride Catalysts for Electrochemical Reduction of Nitrogen to Ammonia at Ambient Conditions' 51 1897-1906 (2015).
  13. Y. Abghoui, A. L. Garden, J. G. Howalt, T. Vegge and E. Skulason, 'Electroreduction of N2 to Ammonia at Ambient Conditions on Mononitrides of Zr, Nb, Cr, and V: A DFT Guide for Experiments' American Chemical Society, 6 635-646 (2016).
  14. Y. Yao, S. Zhu, H. Wang, H. Li and M. Shao, 'A Spectroscopic Study on the Nitrogen Electrochemical Reduction Reaction on Gold and Platinum Surfaces' American Chemical Society, 140 1496-1501 (2018).
  15. S. Giddey, S. P. S. Badwal and A. Kulkarni, 'Review of electrochemical ammonia production technologies and materials' 38 14576-14594 (2013).
  16. V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros and M. Stoukides, 'Progress in the Electrochemical Synthesis of Ammonia' 286 2-13 (2017).
  17. B. M. Lindley, A. M. Appel, K. Krogh-Jespersen, J. M. Mayer and A. J. M. Miller, 'Evaluating the Thermodynamics of Electrocatalytic N2 Reduction in Acetonitrile' American Chemical Society, 1 698-704 (2016).
  18. P. Vanysek, 'Electrochemical series' CRC handbook of chemistry and physics, 8 (2000).
  19. M. A. Shipman and M. D. Symes, 'Recent progress towards the electrosynthesis of ammonia from sustainable resources' 286 57-68 (2017).
  20. J.-H. Zhou and Y.-W. Zhang, 'Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective' The Royal Society of Chemistry, 3 591-625 (2018).
  21. J. Zhao, J. Zhao and Q. Cai, 'Single transition metal atom embedded into a MoS2 nanosheet as a promising catalyst for electrochemical ammonia synthesis' The Royal Society of Chemistry, 20 9248-9255 (2018).
  22. X. Ren, G. Cui, L. Chen, F. Xie, Q. Wei, Z. Tian and X. Sun, 'Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst' The Royal Society of Chemistry, 54 8474-8477 (2018).
  23. K. J. Uk Sim, Seungtaeg Oh, Donghyuk Jeong, Junsang Moon, Jihun Oh, and Ki Tae Nam, 'Hydrogen Production by Electrolysis and Photoelectrochemical System' (2014).
  24. J. H. Montoya, C. Tsai, A. Vojvodic and J. K. Norskov, 'The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations' 8 2180-2186 (2015).
  25. S.-J. Li, D. Bao, M.-M. Shi, B.-R. Wulan, J.-M. Yan and Q. Jiang, 'Amorphizing of Au Nanoparticles by CeOx-RGO Hybrid Support towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions' 29 1700001 (2017).
  26. D. Bao, Q. Zhang, F.-L. Meng, H.-X. Zhong, M.-M. Shi, Y. Zhang, J.-M. Yan, Q. Jiang and X.-B. Zhang, 'Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle' 29 1604799 (2017).
  27. M. Nazemi, S. R. Panikkanvalappil and M. A. El-Sayed, 'Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages' 49 316-323 (2018).
  28. J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam, D. Kim, Y.-E. Sung, J. Choi and H. S. Park, 'Electrochemical Synthesis of NH3 at Low Temperature and Atmospheric Pressure Using a ${\gamma}$-Fe2O3 Catalyst' American Chemical Society, 5 10986-10995 (2017).
  29. S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, 'Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst' 56 2699-2703 (2017).
  30. K. Kim, C.-Y. Yoo, J.-N. Kim, H. C. Yoon and J.-I. Han, 'Electrochemical Synthesis of Ammonia from Water and Nitrogen in Ethylenediamine under Ambient Temperature and Pressure' 163 F1523-F1526 (2016).
  31. X. Zhang, R.-M. Kong, H. Du, L. Xia and F. Qu, 'Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions' The Royal Society of Chemistry, 54 5323-5325 (2018).
  32. X. Yang, J. Nash, J. Anibal, M. Dunwell, S. Kattel, E. Stavitski, K. Attenkofer, J. G. Chen, Y. Yan and B. Xu, 'Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles' American Chemical Society, 140 13387-13391 (2018).
  33. Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang and J. Zhao, 'Facile Ammonia Synthesis from Electrocatalytic N2 Reduction under Ambient Conditions on N-Doped Porous Carbon' American Chemical Society, 8 1186-1191 (2018).
  34. C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu, 'An Amorphous Noble-Metal-Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions' 57 6073-6076 (2018).
  35. N. Furuya and H. Yoshiba, 'Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by Fephthalocyanine' 263 171-174 (1989).
  36. N. Furuya and H. Yoshiba, 'Electroreduction of nitrogen to ammonia on gas-diffusion electrodes loaded with inorganic catalyst' 291 269-272 (1990).
  37. A. Tsuneto, A. Kudo and T. Sakata, 'Lithium-mediated electrochemical reduction of high pressure N2 to NH3' 367 183-188 (1994).
  38. V. Kordali, G. Kyriacou and C. Lambrou, 'Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell' The Royal Society of Chemistry, 1673-1674 (2000).
  39. F. Koleli and T. Ropke, 'Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode' 62 306-310 (2006).
  40. R. Lan, J. T. S. Irvine and S. Tao, 'Synthesis of ammonia directly from air and water at ambient temperature and pressure' The Author(s), 3 1145 (2013).
  41. R. Lan and S. Tao, 'Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4+ mixed conducting electrolyte' The Royal Society of Chemistry, 3 18016-18021 (2013).
  42. K. Kugler, M. Luhn, J. A. Schramm, K. Rahimi and M. Wessling, 'Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis' The Royal Society of Chemistry, 17 3768-3782 (2015).
  43. K. Kim, N. Lee, C.-Y. Yoo, J.-N. Kim, H. C. Yoon and J.-I. Han, 'Communication-Electrochemical Reduction of Nitrogen to Ammonia in 2-Propanol under Ambient Temperature and Pressure' 163 F610-F612 (2016).
  44. D. Yang, T. Chen and Z. Wang, 'Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm' The Royal Society of Chemistry, 5 18967-18971 (2017).
  45. M.-M. Shi, D. Bao, B.-R. Wulan, Y.-H. Li, Y.-F. Zhang, J.-M. Yan and Q. Jiang, 'Au Sub-Nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions' 29 1606550 (2017).
  46. S.-J. Li, D. Bao, M.-M. Shi, B.-R. Wulan, J.-M. Yan and Q. Jiang, 'Amorphizing of Au Nanoparticles by CeOx-RGO Hybrid Support towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions' 29 1700001 (2017).
  47. S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, 'Room-Temperature Electrocatalytic Synthesis of NH3 from H2O and N2 in a Gas-Liquid-Solid Three-Phase Reactor' American Chemical Society, 5 7393-7400 (2017).
  48. G.-F. Chen, X. Cao, S. Wu, X. Zeng, L.-X. Ding, M. Zhu and H. Wang, 'Ammonia Electrosynthesis with High Selectivity under Ambient Conditions via a Li+Incorporation Strategy' American Chemical Society, 139 9771-9774 (2017).
  49. X. Zhao, F. Yin, N. Liu, G. Li, T. Fan and B. J. J. o. M. S. Chen, 'Highly efficient metal-organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure' 52 10175-10185 (2017).
  50. F. Zhou, L. M. Azofra, M. Ali, M. Kar, A. N. Simonov, C. McDonnell-Worth, C. Sun, X. Zhang and D. R. MacFarlane, 'Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids' The Royal Society of Chemistry, 10 2516-2520 (2017).
  51. H.-M. Liu, S.-H. Han, Y. Zhao, Y.-Y. Zhu, X.-L. Tian, J.-H. Zeng, J.-X. Jiang, B. Y. Xia and Y. Chen, 'Surfactantfree atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction' The Royal Society of Chemistry, 6 3211-3217 (2018).
  52. B. L. Sheets and G. G. Botte, 'Electrochemical nitrogen reduction to ammonia under mild conditions enabled by a polymer gel electrolyte' The Royal Society of Chemistry, 54 4250-4253 (2018).
  53. M. Nazemi and M. A. El-Sayed, 'Electrochemical Synthesis of Ammonia from N2 and H2O under Ambient Conditions Using Pore-Size-Controlled Hollow Gold Nanocatalysts with Tunable Plasmonic Properties' American Chemical Society, 9 5160-5166 (2018).
  54. L. Zhang, X. Ji, X. Ren, Y. Luo, X. Shi, A. M. Asiri, B. Zheng and X. Sun, 'Efficient Electrochemical N2 Reduction to NH3 on MoN Nanosheets Array under Ambient Conditions' American Chemical Society, 6 9550-9554 (2018).
  55. Y. Song, D. Johnson, R. Peng, D. K. Hensley, P. V. Bonnesen, L. Liang, J. Huang, F. Yang, F. Zhang, R. Qiao, A. P. Baddorf, T. J. Tschaplinski, N. L. Engle, M. C. Hatzell, Z. Wu, D. A. Cullen, H. M. Meyer, B. G. Sumpter and A. J. Rondinone, 'A physical catalyst for the electrolysis of nitrogen to ammonia' 4 (2018).
  56. Y. Yao, Q. Feng, S. Zhu, J. Li, Y. Yao, Y. Wang, Q. Wang, M. Gu, H. Wang, H. Li, X.-Z. Yuan and M. Shao, 'Chromium Oxynitride Electrocatalysts for Electrochemical Synthesis of Ammonia Under Ambient Conditions' 0 1800324 (2018).
  57. L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang and X. Sun, 'Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies' 30 1800191 (2018).
  58. M. Ali, F. Zhou, K. Chen, C. Kotzur, C. Xiao, L. Bourgeois, X. Zhang and D. R. MacFarlane, 'Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon' The Author(s), 7 11335 (2016).
  59. H. Hirakawa, M. Hashimoto, Y. Shiraishi and T. Hirai, 'Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide' American Chemical Society, 139 10929-10936 (2017).
  60. H. Li, J. Shang, Z. Ai and L. Zhang, 'Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets' American Chemical Society, 137 6393-6399 (2015).
  61. G. Dong, W. Ho and C. Wang, 'Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies' The Royal Society of Chemistry, 3 23435-23441 (2015).