DOI QR코드

DOI QR Code

Manufacturing Optimization of Ni Based Disk Type Catalyst for CO2 Methanation

CO2 메탄화 반응을 위한 Ni 기반 Disk Type 촉매의 제조 최적화에 관한 연구

  • Lee, Jae-Joung (Department of Environmental Energy Engineering, Graduate School, Kyonggi University) ;
  • Moon, Dea-Hyun (Department of Environmental Energy Engineering, Graduate School, Kyonggi University) ;
  • Chang, Soon-Wong (Department of Environmental Energy Engineering, College of Engineering, Kyonggi University)
  • 이재정 (경기대학교 일반대학원 환경에너지공학과) ;
  • 문대헌 (경기대학교 일반대학원 환경에너지공학과) ;
  • 장순웅 (경기대학교 창의공과대학 환경에너지공학과)
  • Received : 2018.09.28
  • Accepted : 2019.01.04
  • Published : 2019.01.31

Abstract

The catalytic activity of Ni-0.2%YSZ (Yttria-Stabilized Zirconia) with different promoters was evaluated for $CO_2$ methanation. The catalysts were weighed for mixing and they were dried at $110^{\circ}C$ for molding into disks. The concentration of $CO_2$ and $CH_4$ for conducting of $CO_2$ methanation were analyzed by gas chromatography and the physical characteristics of the disk-type catalyst formed were analyzed by X-ray diffraction, scanning electron microscope and energy dispersive x-ray spectrometer. The addition of $CeO_2$ as a promoter for Ni-0.2%YSZ (denoted as Ni-5%Ce-0.2%YSZ) resulted in the highest $CO_2$ methanation. It also showed catalytic activity at a low temperature($200^{\circ}C$). Following this, $ZrO_2$, $SiO_2$, $Al_2O_3$ and $TiO_2$ were added to Ni-5%Ce-0.2%YSZ to compare the $CO_2$ methanation, and the highest efficiency was found for. Ni-1%Ti-5%Ce-0.2%YSZ Then, the concentration of Ti was increased to 10% and the catalytic activity was estimated using seven different types of commercial $TiO_2$. In conclusion, ST-01 $TiO_2$ showed the highest efficiency for $CO_2$ methanation.

Acknowledgement

Supported by : 경기대학교 대학원

References

  1. Andersson, M. P., Abild-Pedersen, F., Remediakis, I. N., Bligaard, T., Jones, G., Engbaek, J., Lytken, O., Horch, S., Nielsen, J. H., Sehested, J., Rostrup-Nielsen, J. R., Norskov, J. Chorkendorff, K. I., 2008, Structure sensitivity of the methanation reaction : $H_2$-induced CO dissociation on nickel surfaces, J. Catal, 255, 6-19. https://doi.org/10.1016/j.jcat.2007.12.016
  2. C.D.da Silva, D., Letichevsky, S., E. P. Borges, L., G.Appel, L., 2012, The Ni/$ZrO_2$ catalyst and the methanation of CO and $CO_2$, Int. J. Hydrogen Energ., 37, 8923-8928. https://doi.org/10.1016/j.ijhydene.2012.03.020
  3. Cai, W., Zhong, Q., Zhao, Y., 2013, Fractional-hydrolysis-driven formation of non-uniform dopant concentration catalyst nanoparticles of Ni/CexZr1-$xO_2$ and its catalysis in methanation of $CO_2$, Catal. Commun., 39, 30-34. https://doi.org/10.1016/j.catcom.2013.04.025
  4. Choi, J. N., Chang, T. S., Kim, B. S., 2012, Recent Development of Carbon Dioxide Conversion Technology, CLEAN TECHNOLOGY, 18, 229-249. https://doi.org/10.7464/ksct.2012.18.3.229
  5. Choudhury, M.B.I., Ahmed, S., Shalabi, M. A., Inuic, T., 2006, Preferential methanation of CO in a syngas involving $CO_2$ at lower temperature range, Appl. Catal. A-Gen., 314, 47-53. https://doi.org/10.1016/j.apcata.2006.08.008
  6. Du, Y. L., Wu, X., Cheng, Q., Huang, Y. L., Huang, W., 2017, Development of Ni-based catalysts derived from hydrotalcite-like compounds precursors for synthesis gas production via methane or ethanol reforming, Catalysts, 7, 70. https://doi.org/10.3390/catal7020070
  7. Ghaib, K., Korbinian, N., Ben Fares, F. Z., 2016, Chemical methanation of $CO_2$: a review, Chem. Bio. Eng. Rev., 3, 266-275.
  8. Goli, A., Shamiri, A., Talaiekhozani, A., Eshtiaghi, N., Aghamohammadi, N., Mohamed, K. A., 2016, An overview of biological processes and their potential for $CO_2$ capture, J. Environ. Manage., 183, 41-58. https://doi.org/10.1016/j.jenvman.2016.08.054
  9. Goodman, D. J., 2013, Methanation of Carbon Dioxide, University of California, Los Angeles.
  10. Gotz, M, Koch, AM, Graf, F., 2014, State of the Art and Perspectives of $CO_2$ Methanation Process Concepts for Power-to-Gas Applications, Copenhagen: International Gas Union Research Conference.
  11. Graca, I., Gonzalez, L. V., Bacariza A., M. C., Fernandes, Henriques, C., Lopes, J. M., Ribeiro, M.F., 2014, $CO_2$ hydrogenation into $CH_4$ on NiHNaUSY zeolites, Appl. Catal. B-Environ., 147, 101-110. https://doi.org/10.1016/j.apcatb.2013.08.010
  12. Hong, S. C., 2012, A Study on Reaction Characteristics of $CO_2$ Conversion Methanation over Pt Catalysts for Reduction of GHG, Appl. Chem. Engineering, 23, 6, 572-576.
  13. IEA, 2017, $CO_2$ emission report of energy sector, 2018, 2017 Global Energy & $CO_2$ Status Report.
  14. Jurgensen, L., Augustine, E., Jens, E., Jens, B., Holm-Nielsen, B., 2015, Dynamic biogas upgrading based on Sabatier process: Thermodynamic and dynamic process simulation, Bioresour. Technol., 178, 323-329. https://doi.org/10.1016/j.biortech.2014.10.069
  15. Karelovic, A., Ruiz, P., 2013, Mechanistic study of low temperature $CO_2$ methanation over Rh/$TiO_2$ catalysts, J. Catal., 301, 141-153. https://doi.org/10.1016/j.jcat.2013.02.009
  16. Kim, A., P. Debecker, D., Devred, F., Dubois, V., Sanchez, C., Sassoye, C., 2018, $CO_2$ methanation on Ru/$TiO_2$ catalysts: On the effect of mixing anatase and rutile $TiO_2$ supports, Appl. Catal. B-Environ., 220, 615-625. https://doi.org/10.1016/j.apcatb.2017.08.058
  17. Kim, H. Y., Lee, H. M., Park, J. N., 2010, Bifunctional mechanism of $CO_2$ methanation on Pd-MgO/$SiO_2$ catalyst : independent roles of MgO and Pd on $CO_2$ methanation, J. Phys. Chem. C., 114, 7128-7131. https://doi.org/10.1021/jp100938v
  18. Kim, S. H., Nam, S. W., Lim, T. H., Lee, H. I., 2008, Effect of pretreatment on the activity of Ni catalyst for CO removal reaction by water - gas shift and methanation, Appl. Catal. B-Environ., 81, 97-104. https://doi.org/10.1016/j.apcatb.2007.12.009
  19. Kramer, M., Stowe, K., Duisberg, M., Muller, F., Reiser, M., Sticher, S., Maier, W. F., 2009, The impact of dopants on the activity and selectivity of a Ni-based methanation catalyst, Appl. Catal. A-Gen., 369, 42-52. https://doi.org/10.1016/j.apcata.2009.08.027
  20. Le, T. A., Kim, M. S., Lee, S. H., Kim, T. W., Park, E. D, 2017, CO and $CO_2$ methanation over supported Ni catalysts, Catal. Today, 293, 89-96.
  21. Moon, D. H., Lee, S. M., Ahn, J. Y., Nguyen, D. D., Kim, S. S., Chang, S. W., 2018, New Ni-based quaternary disk-shaped catalysts for low-temperature $CO_2$ methanation: Fabrication, characterization, and performance, J. Environ. Manage., 218, 88-94. https://doi.org/10.1016/j.jenvman.2018.04.034
  22. Morales, M. A., Pretelin, C. Vergara, M., Leiva, M. A., Martinez Delgadillo, S. A., Rosa-Dominguez, E. R., 2016, Life cycle assessment of carbon capture and utilization from ammonia process in Mexico, J. Environ. Manage, 183, 998-1008. https://doi.org/10.1016/j.jenvman.2016.09.048
  23. Muller, K., Fleige, M., Rachow, F., Schmeisser, D., 2013, Sabatier based $CO_2$-methanation of flue gas emitted by conventional power plants, Energy Procedia, 40, 240-248. https://doi.org/10.1016/j.egypro.2013.08.028
  24. Muroyama, H., Tsuda, Y., Asakoshi, T., Masitah, H., Okanishi, T., Matsui, T., Eguchi, K., 2016, Carbon dioxide methanation over Ni catalysts supported on various metal oxides, J. Catal., 343, 178-184. https://doi.org/10.1016/j.jcat.2016.07.018
  25. Nurunnabi, M., Murata, K., Okabe, K., Inaba, M., Takahara, I., 2008, Performance and characterization of Ru/$Al_2O_3$ and Ru/$SiO_2$ catalysts modified with Mn for Fisher-Tropsch synthesis, Appl. Catal. A-Gen., 340, pp. 203-211. https://doi.org/10.1016/j.apcata.2008.02.013
  26. Ocampo, F., Louis, B., Roger, A.C., 2009, Methanation of carbon dioxide over nickel-based $Ce0.72Zr0.28O_2$ mixed oxide catalysts prepared by sol-gel method, Appl. Catal. A-Gen., 369, 90-99. https://doi.org/10.1016/j.apcata.2009.09.005
  27. Ocampo, F., Louis, B., Kiwi-Minsker, L., Roger, A.C., 2011, Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1-$xO_2$ catalysts for carbon dioxide methanation, Appl. Catal. A-Gen., 392, 36-44. https://doi.org/10.1016/j.apcata.2010.10.025
  28. Olajire, A. A., 2013, Valorization of greenhouse carbon dioxide emissions into valueadded products by catalytic processes, J. $CO_2$ Util., 3, 74-92.
  29. Pan, Q., Peng, J., Sun, T., Gao, D., Wang, S., Wang, S, 2014, $CO_2$ methanation on Ni/$Ce0.5Zr0.5O_2$ catalysts for the production of synthetic natural gas, Fuel Process. Technol., 123, 166-171. https://doi.org/10.1016/j.fuproc.2014.01.004
  30. Panpranot, J, Goodwin Jr., J. G., Sayari, A., 2002, CO hydrogenation on Ru-promoted Co/MCM-41 catalysts, J. Catal., 211, 530-539. https://doi.org/10.1016/S0021-9517(02)93761-9
  31. Park, J. N., W. McFarland, Eric, 2009, A highly dispersed Pd-Mg/$SiO_2$ catalyst active for methanation of $CO_2$, J. Catal., 266, 92-97. https://doi.org/10.1016/j.jcat.2009.05.018
  32. Petersson, A, Wellinger, A., 2009, Biogas upgrading technologies - developments and innovations, IEA Bioenergy, Task 37 - Energy from biogas and landfill gas.
  33. Razzaq, R., Zhu, H., Jiang, L., Muhammad, U., Li, C., Zhang, S., 2013, Catalytic methanation of CO and $CO_2$ in coke oven gas over NieCo/$ZrO_2$-$CeO_2$, Ind. Eng. Chem. Res., 52, 2247-2256. https://doi.org/10.1021/ie301399z
  34. Ren, J., Qin, X., Yang, J. Z., Qin, Z. F., Guo, H. L., Lin, J. Y., Li, Z., 2015, Methanation of carbon dioxide over NieM/$ZrO_2$ (M = Fe, Co, Cu) catalysts : effect of addition of a second metal, Fuel Process. Technol., 137, 204-211. https://doi.org/10.1016/j.fuproc.2015.04.022
  35. Schoder, M., Armbruster, U., Martin, A., 2013, Heterogeneously catalyzed hydrogenation of carbon dioxide to methane at increased reaction pressures, Chem. Ing. Tech., 85, 344-352. https://doi.org/10.1002/cite.201200112
  36. Swalus, C., Jacquemin, M., Poleunis, C., Bertrand, P., Ruiz, P., 2012, $CO_2$ methanation on Rh/g-$Al_2O_3$ catalyst at low temperature: In situ supply of hydrogen by Ni/activated carbon catalyst, Appl. Catal. B-Environ., 125, 41-50. https://doi.org/10.1016/j.apcatb.2012.05.019
  37. Tada, S., Shimizu, T., Kameyama, H., Haneda, T., Kikuchi, R., 2012, Ni/$CeO_2$ catalysts with high $CO_2$ methanation activity and high $CH_4$ selectivity at low temperatures, Int. J. Hydrogen Energ, 37, 5527-5531. https://doi.org/10.1016/j.ijhydene.2011.12.122
  38. Wentrcek, P. R., Wood, B. J., Wise, H., 1976, The role of surface carbon in catalytic methanation, J. Catal., 43, 363-366. https://doi.org/10.1016/0021-9517(76)90324-9
  39. Xu, J., Lin, Q., Su, X., Duan, H., Geng, H., Huang, Y., 2016, $CO_2$ methanation over $TiO_2-Al_2O_3$ binary oxides supported Ru catalysts, Chin. J. Chem. Eng., 24, 140-145. https://doi.org/10.1016/j.cjche.2015.07.002
  40. Zhang, Y., Wang, R., Lin, X., Wang, Z., Liu, J., Zhou, J., Cen, K., 2014, Effects of Ce/Zr composition on nickel based Ce(1-x)$ZrxO_2$ catalysts for hydrogen production in sulfur-iodine cycle, Int. J. Hydrogen Energ., 39, 10853-10860. https://doi.org/10.1016/j.ijhydene.2014.05.061
  41. Zhou, G., Wu, T., Xie, H., Zheng, X., 2013, Effects of structure on the carbon dioxide methanation performance of Co-based catalysts, Int. J. Hydrogen Energ., 38, 10012-10018. https://doi.org/10.1016/j.ijhydene.2013.05.130
  42. Janke, C., Duyar, M. S., Hoskins, M., Farrauto, R., 2014, Catalytic and adsorption studies for the hydrogenation of $CO_2$ to methane, Appl. Catal. B-Environ., 152-153, 184-191. https://doi.org/10.1016/j.apcatb.2014.01.016