Manufacturing Optimization of Ni Based Disk Type Catalyst for CO2 Methanation

CO2 메탄화 반응을 위한 Ni 기반 Disk Type 촉매의 제조 최적화에 관한 연구

  • Lee, Jae-Joung (Department of Environmental Energy Engineering, Graduate School, Kyonggi University) ;
  • Moon, Dea-Hyun (Department of Environmental Energy Engineering, Graduate School, Kyonggi University) ;
  • Chang, Soon-Wong (Department of Environmental Energy Engineering, College of Engineering, Kyonggi University)
  • 이재정 (경기대학교 일반대학원 환경에너지공학과) ;
  • 문대헌 (경기대학교 일반대학원 환경에너지공학과) ;
  • 장순웅 (경기대학교 창의공과대학 환경에너지공학과)
  • Received : 2018.09.28
  • Accepted : 2019.01.04
  • Published : 2019.01.31


The catalytic activity of Ni-0.2%YSZ (Yttria-Stabilized Zirconia) with different promoters was evaluated for $CO_2$ methanation. The catalysts were weighed for mixing and they were dried at $110^{\circ}C$ for molding into disks. The concentration of $CO_2$ and $CH_4$ for conducting of $CO_2$ methanation were analyzed by gas chromatography and the physical characteristics of the disk-type catalyst formed were analyzed by X-ray diffraction, scanning electron microscope and energy dispersive x-ray spectrometer. The addition of $CeO_2$ as a promoter for Ni-0.2%YSZ (denoted as Ni-5%Ce-0.2%YSZ) resulted in the highest $CO_2$ methanation. It also showed catalytic activity at a low temperature($200^{\circ}C$). Following this, $ZrO_2$, $SiO_2$, $Al_2O_3$ and $TiO_2$ were added to Ni-5%Ce-0.2%YSZ to compare the $CO_2$ methanation, and the highest efficiency was found for. Ni-1%Ti-5%Ce-0.2%YSZ Then, the concentration of Ti was increased to 10% and the catalytic activity was estimated using seven different types of commercial $TiO_2$. In conclusion, ST-01 $TiO_2$ showed the highest efficiency for $CO_2$ methanation.


Supported by : 경기대학교 대학원


  1. Andersson, M. P., Abild-Pedersen, F., Remediakis, I. N., Bligaard, T., Jones, G., Engbaek, J., Lytken, O., Horch, S., Nielsen, J. H., Sehested, J., Rostrup-Nielsen, J. R., Norskov, J. Chorkendorff, K. I., 2008, Structure sensitivity of the methanation reaction : $H_2$-induced CO dissociation on nickel surfaces, J. Catal, 255, 6-19.
  2. C.D.da Silva, D., Letichevsky, S., E. P. Borges, L., G.Appel, L., 2012, The Ni/$ZrO_2$ catalyst and the methanation of CO and $CO_2$, Int. J. Hydrogen Energ., 37, 8923-8928.
  3. Cai, W., Zhong, Q., Zhao, Y., 2013, Fractional-hydrolysis-driven formation of non-uniform dopant concentration catalyst nanoparticles of Ni/CexZr1-$xO_2$ and its catalysis in methanation of $CO_2$, Catal. Commun., 39, 30-34.
  4. Choi, J. N., Chang, T. S., Kim, B. S., 2012, Recent Development of Carbon Dioxide Conversion Technology, CLEAN TECHNOLOGY, 18, 229-249.
  5. Choudhury, M.B.I., Ahmed, S., Shalabi, M. A., Inuic, T., 2006, Preferential methanation of CO in a syngas involving $CO_2$ at lower temperature range, Appl. Catal. A-Gen., 314, 47-53.
  6. Du, Y. L., Wu, X., Cheng, Q., Huang, Y. L., Huang, W., 2017, Development of Ni-based catalysts derived from hydrotalcite-like compounds precursors for synthesis gas production via methane or ethanol reforming, Catalysts, 7, 70.
  7. Ghaib, K., Korbinian, N., Ben Fares, F. Z., 2016, Chemical methanation of $CO_2$: a review, Chem. Bio. Eng. Rev., 3, 266-275.
  8. Goli, A., Shamiri, A., Talaiekhozani, A., Eshtiaghi, N., Aghamohammadi, N., Mohamed, K. A., 2016, An overview of biological processes and their potential for $CO_2$ capture, J. Environ. Manage., 183, 41-58.
  9. Goodman, D. J., 2013, Methanation of Carbon Dioxide, University of California, Los Angeles.
  10. Gotz, M, Koch, AM, Graf, F., 2014, State of the Art and Perspectives of $CO_2$ Methanation Process Concepts for Power-to-Gas Applications, Copenhagen: International Gas Union Research Conference.
  11. Graca, I., Gonzalez, L. V., Bacariza A., M. C., Fernandes, Henriques, C., Lopes, J. M., Ribeiro, M.F., 2014, $CO_2$ hydrogenation into $CH_4$ on NiHNaUSY zeolites, Appl. Catal. B-Environ., 147, 101-110.
  12. Hong, S. C., 2012, A Study on Reaction Characteristics of $CO_2$ Conversion Methanation over Pt Catalysts for Reduction of GHG, Appl. Chem. Engineering, 23, 6, 572-576.
  13. IEA, 2017, $CO_2$ emission report of energy sector, 2018, 2017 Global Energy & $CO_2$ Status Report.
  14. Janke, C., Duyar, M. S., Hoskins, M., Farrauto, R., 2014, Catalytic and adsorption studies for the hydrogenation of $CO_2$ to methane, Appl. Catal. B-Environ., 152-153, 184-191.
  15. Jurgensen, L., Augustine, E., Jens, E., Jens, B., Holm-Nielsen, B., 2015, Dynamic biogas upgrading based on Sabatier process: Thermodynamic and dynamic process simulation, Bioresour. Technol., 178, 323-329.
  16. Karelovic, A., Ruiz, P., 2013, Mechanistic study of low temperature $CO_2$ methanation over Rh/$TiO_2$ catalysts, J. Catal., 301, 141-153.
  17. Kim, A., P. Debecker, D., Devred, F., Dubois, V., Sanchez, C., Sassoye, C., 2018, $CO_2$ methanation on Ru/$TiO_2$ catalysts: On the effect of mixing anatase and rutile $TiO_2$ supports, Appl. Catal. B-Environ., 220, 615-625.
  18. Kim, H. Y., Lee, H. M., Park, J. N., 2010, Bifunctional mechanism of $CO_2$ methanation on Pd-MgO/$SiO_2$ catalyst : independent roles of MgO and Pd on $CO_2$ methanation, J. Phys. Chem. C., 114, 7128-7131.
  19. Kim, S. H., Nam, S. W., Lim, T. H., Lee, H. I., 2008, Effect of pretreatment on the activity of Ni catalyst for CO removal reaction by water - gas shift and methanation, Appl. Catal. B-Environ., 81, 97-104.
  20. Kramer, M., Stowe, K., Duisberg, M., Muller, F., Reiser, M., Sticher, S., Maier, W. F., 2009, The impact of dopants on the activity and selectivity of a Ni-based methanation catalyst, Appl. Catal. A-Gen., 369, 42-52.
  21. Le, T. A., Kim, M. S., Lee, S. H., Kim, T. W., Park, E. D, 2017, CO and $CO_2$ methanation over supported Ni catalysts, Catal. Today, 293, 89-96.
  22. Moon, D. H., Lee, S. M., Ahn, J. Y., Nguyen, D. D., Kim, S. S., Chang, S. W., 2018, New Ni-based quaternary disk-shaped catalysts for low-temperature $CO_2$ methanation: Fabrication, characterization, and performance, J. Environ. Manage., 218, 88-94.
  23. Morales, M. A., Pretelin, C. Vergara, M., Leiva, M. A., Martinez Delgadillo, S. A., Rosa-Dominguez, E. R., 2016, Life cycle assessment of carbon capture and utilization from ammonia process in Mexico, J. Environ. Manage, 183, 998-1008.
  24. Muller, K., Fleige, M., Rachow, F., Schmeisser, D., 2013, Sabatier based $CO_2$-methanation of flue gas emitted by conventional power plants, Energy Procedia, 40, 240-248.
  25. Muroyama, H., Tsuda, Y., Asakoshi, T., Masitah, H., Okanishi, T., Matsui, T., Eguchi, K., 2016, Carbon dioxide methanation over Ni catalysts supported on various metal oxides, J. Catal., 343, 178-184.
  26. Nurunnabi, M., Murata, K., Okabe, K., Inaba, M., Takahara, I., 2008, Performance and characterization of Ru/$Al_2O_3$ and Ru/$SiO_2$ catalysts modified with Mn for Fisher-Tropsch synthesis, Appl. Catal. A-Gen., 340, pp. 203-211.
  27. Ocampo, F., Louis, B., Roger, A.C., 2009, Methanation of carbon dioxide over nickel-based $Ce0.72Zr0.28O_2$ mixed oxide catalysts prepared by sol-gel method, Appl. Catal. A-Gen., 369, 90-99.
  28. Ocampo, F., Louis, B., Kiwi-Minsker, L., Roger, A.C., 2011, Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1-$xO_2$ catalysts for carbon dioxide methanation, Appl. Catal. A-Gen., 392, 36-44.
  29. Olajire, A. A., 2013, Valorization of greenhouse carbon dioxide emissions into valueadded products by catalytic processes, J. $CO_2$ Util., 3, 74-92.
  30. Pan, Q., Peng, J., Sun, T., Gao, D., Wang, S., Wang, S, 2014, $CO_2$ methanation on Ni/$Ce0.5Zr0.5O_2$ catalysts for the production of synthetic natural gas, Fuel Process. Technol., 123, 166-171.
  31. Panpranot, J, Goodwin Jr., J. G., Sayari, A., 2002, CO hydrogenation on Ru-promoted Co/MCM-41 catalysts, J. Catal., 211, 530-539.
  32. Park, J. N., W. McFarland, Eric, 2009, A highly dispersed Pd-Mg/$SiO_2$ catalyst active for methanation of $CO_2$, J. Catal., 266, 92-97.
  33. Petersson, A, Wellinger, A., 2009, Biogas upgrading technologies - developments and innovations, IEA Bioenergy, Task 37 - Energy from biogas and landfill gas.
  34. Razzaq, R., Zhu, H., Jiang, L., Muhammad, U., Li, C., Zhang, S., 2013, Catalytic methanation of CO and $CO_2$ in coke oven gas over NieCo/$ZrO_2$-$CeO_2$, Ind. Eng. Chem. Res., 52, 2247-2256.
  35. Ren, J., Qin, X., Yang, J. Z., Qin, Z. F., Guo, H. L., Lin, J. Y., Li, Z., 2015, Methanation of carbon dioxide over NieM/$ZrO_2$ (M = Fe, Co, Cu) catalysts : effect of addition of a second metal, Fuel Process. Technol., 137, 204-211.
  36. Schoder, M., Armbruster, U., Martin, A., 2013, Heterogeneously catalyzed hydrogenation of carbon dioxide to methane at increased reaction pressures, Chem. Ing. Tech., 85, 344-352.
  37. Swalus, C., Jacquemin, M., Poleunis, C., Bertrand, P., Ruiz, P., 2012, $CO_2$ methanation on Rh/g-$Al_2O_3$ catalyst at low temperature: In situ supply of hydrogen by Ni/activated carbon catalyst, Appl. Catal. B-Environ., 125, 41-50.
  38. Tada, S., Shimizu, T., Kameyama, H., Haneda, T., Kikuchi, R., 2012, Ni/$CeO_2$ catalysts with high $CO_2$ methanation activity and high $CH_4$ selectivity at low temperatures, Int. J. Hydrogen Energ, 37, 5527-5531.
  39. Wentrcek, P. R., Wood, B. J., Wise, H., 1976, The role of surface carbon in catalytic methanation, J. Catal., 43, 363-366.
  40. Xu, J., Lin, Q., Su, X., Duan, H., Geng, H., Huang, Y., 2016, $CO_2$ methanation over $TiO_2-Al_2O_3$ binary oxides supported Ru catalysts, Chin. J. Chem. Eng., 24, 140-145.
  41. Zhang, Y., Wang, R., Lin, X., Wang, Z., Liu, J., Zhou, J., Cen, K., 2014, Effects of Ce/Zr composition on nickel based Ce(1-x)$ZrxO_2$ catalysts for hydrogen production in sulfur-iodine cycle, Int. J. Hydrogen Energ., 39, 10853-10860.
  42. Zhou, G., Wu, T., Xie, H., Zheng, X., 2013, Effects of structure on the carbon dioxide methanation performance of Co-based catalysts, Int. J. Hydrogen Energ., 38, 10012-10018.