DOI QR코드

DOI QR Code

Characteristics of Cu and Cs Ions adsorbed on an immobilized Adsorbent including Zeolite Synthesized from Jeju Scoria

제주 스코리아로부터 합성한 제올라이트계 고정화 흡착제에 의한 Cu와 Cs 이온의 흡착 특성

  • Lee, Chang-Han (Department of Environmental Adminstration, Catholic University of Pusan) ;
  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • 이창한 (부산가톨릭대학교 환경행정학과) ;
  • 감상규 (제주대학교 환경공학과) ;
  • 이민규 (부경대학교 화학공학과)
  • Received : 2018.09.17
  • Accepted : 2018.10.20
  • Published : 2019.01.31

Abstract

The adsorption properties of $Cs^+$ and $Cu^{2+}$ ions were evaluated by using a polysulfone scoria zeolite (PSf-SZ) composite with synthetic zeolite synthesized from Jeju volcanic rocks (scoria). In order to investigate the adsorption properties, various parameters, such as pH, contact time, reaction rate, concentration, and temperature in aqueous solutions, were evaluated by tests carried out in batch experiments. The adsorption capacities of $Cs^+$ and $Cu^{2+}$ ions increased between pH 2 but achieved equilibrium at pH 4 and above. The adsorption rate increased rapidly up to the initial 24 h, after which it plateaued ; the adsorption rate then sustained at equilibrium from 48 h. The adsorption kinetics of $Cs^+$ and $Cu^{2+}$ ions were described better by the pseudo-second-order kinetic model than the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model. The maximum adsorption capacities of $Cs^+$ and $Cu^{2+}$ ions obtained from the Langmuir model were 53.8 mg/g and 84.7 mg/g, respectively. The calculated thermodynamic parameters showed that the adsorption of $Cs^+$ and $Cu^{2+}$ ions on PSf-SZ was feasible, spontaneous and endothermic reaction.

References

  1. Kam, S. K., Kim, D. S., Lee, M. G., 1999, Comparions of removal performances of divalent heavy metals by natural and pretreated zeolites, J. Environ. Sci. Int., 8, 399-409.
  2. Kam, S. K., Lee, C. H., Jeong, K. S., Lee, M. G., 2016, Fabrication of PAN/FZ beads via immobilization of zeolite prepared from coal fly ash with polyacrylonitrile and their Sr and Cu removal characteristics, J. Environ. Sci. Int., 25, 1613-1622. https://doi.org/10.5322/JESI.2016.25.12.1613
  3. Lagergren, S., 1898, About the theory of so-called adsorption of soluble substances, Kunglia Svenska Vetenskapsa-kademiens Handlingar., 24, 1-39.
  4. Langmuir, I., 1918, The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-140. https://doi.org/10.1021/ja02242a004
  5. Lee, C. H., Kam, S. K., Lee, M. G., 2015a, Removal of Sr and Cs ions by SAN-zeolite beads prepared by immobilization of zeolite with SAN, J. Environ. Sci. Intern., 24, 1331-1341. https://doi.org/10.5322/JESI.2015.24.11.1331
  6. Lee, C. H., Lee, M. G., Min, S. K., 2015b, Removal of Sr and Cs ions in aqueous solution by PVC-zeolite composite, J. Environ. Sci. Int., 24, 1145-1153. https://doi.org/10.5322/JESI.2015.24.9.1145
  7. Lee, C. H., Suh, J. H., 2009, Adsorption characteristics of cobalt ion with zeolite synthesized by coal fly ash, J. Korean Soc. Environ. Engrs., 31, 941-946.
  8. Lee, M. G., Lee, D. H., Oh, Y. H., Ahn, B. J., 1997, Removal characteristics of heavy metal by Na-P1 zeolite synthesized from coal fly ash, J. Environ. Sci. Intern., 1, 167-175.
  9. Kam, S. K., Jeon, J. W., Lee, M. G., 2014, Removal of Cu(II) and Pb(II) by solid-phase extractant prepared by immobilizing D2EHPA with polysulfone, J. Environ. Sci. Int., 23, 1843-1850. https://doi.org/10.5322/JESI.2014.23.11.1843
  10. Ahmadpour, A., Zabihi, M., Tahmasbi, M., Bastami, T. R., 2010, Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions, J. Hazard. Mater., 182, 552-556. https://doi.org/10.1016/j.jhazmat.2010.06.067
  11. El-Dessouky, M. I., El-Naggar, M. R., El-Rahman, K. M. A., El-Kamash, A. M., 2011, Thermodynamic and fixed bed studies for the removal of $Cs^+$ and $Sr^{2+}$ ions from aqueous solutions using fly ash based Na A-X zeolite blend, Int. J. Environ. Eng. Sci., 2, 117-134.
  12. Faghihian, H., Iravani, M., Moayed, M., Ghannadi-Maragheh, M., 2013, Preparation of a novel PAN-. zeolite nanocomposite for removal of $Cs^+$ and $Sr^{2+}$ from aqueous solutions: Kinetic, equilibrium and thermodynamic studies, Chem. Eng. J., 222, 41-48. https://doi.org/10.1016/j.cej.2013.02.035
  13. Freundlich, H. M. F., 1906, Over the adsorption in solution, J. Phys. Chem., 57, 385-470.
  14. Ho, Y. S., McKay, G., 1998, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng., 76, 822-827. https://doi.org/10.1002/cjce.5450760419
  15. Hui, K. S., Chao, C. Y. H., Kot, S. C., 2005, Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash, J. Hazard. Mater., 127, 97-98.
  16. Jeon, B. E., Ahn, B. J., Chang, W. H., Kam, S. K., Lee, M. G., 2004, Zeolitic conversion of cheju scoria, J. Ind. Eng. Chem., 10(4), 618-622.
  17. Joung, S. Y., Kim, Y. S., Cheong, I. W., Kim, J. H., 2014, Removal metal ions based on chelating polymer, Polym. Sci. Tech., 25, 140-146.
  18. Kam, S. K., Hyun, S. S., Lee, M. G., 2011, Adsorption of lead ion by zeolite synthesized from Jeju Scoria, J. Environ. Sci. Int., 20, 1437-1445. https://doi.org/10.5322/JES.2011.20.11.1437
  19. Lee, M. G., Park, J. W., Kam, S. K., Lee, C. H., 2018, Synthesis of Na-A zeolite from Jeju Island scoria using fusion/hydrothermal method, Chemosphere, 207, 203-208. https://doi.org/10.1016/j.chemosphere.2018.05.080
  20. Ma, B., Oh, S., Shin, W. S., Choi, S. J., 2011, Removal of $Co^{2+}$, $Sr^{2+}$ and $Cs^+$ from aqueous solution by phosphate-modified montmorillonite (PMM), Desalination, 276, 336-346. https://doi.org/10.1016/j.desal.2011.03.072
  21. Mao, M., Liu, Z., Wang, T., Yu, B., Wen, X., Yang, K., Zhao, C., 2006, Polysulfone-activated carbon hybrid particles for the removal of BPA, Sepa. Sci. Tech., 41, 515-529. https://doi.org/10.1080/01496390500524875
  22. Merrikhpour, H., Jalali, H., 2013, Comparative ad competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite, Clean Tech. Environ. Pol., 15, 303-316. https://doi.org/10.1007/s10098-012-0522-1
  23. Motsi, T., Rowson, N. A., Simmons, M. J. H., 2009, Adsorption of heavy metals from acid mine drainage by natural zeolite, Intern. J. Mine. Process., 92, 42-48. https://doi.org/10.1016/j.minpro.2009.02.005
  24. Ngomsik, A. F., Bee, A., Siaugue, J. M., Cabuil, V., Cote, G., 2006, Nickel adsorption by magnetic alginate microcapsules containing an extractant, Wat. Res., 40, 1848-1856. https://doi.org/10.1016/j.watres.2006.02.036
  25. Ok, Y. S., Yang, J. E., Zhang, Y. S., Kim, S. J., Chung, D. Y., 2007, Heavy metal adsorption by a formulated zeolite-Portland cement mixture, J. Hazard. Mater. 147, 91-96. https://doi.org/10.1016/j.jhazmat.2006.12.046
  26. Querol, X., Moreno, N., Umana, J. C., Alastuey, A., Hernandez, E., Lopez-Soler, A., Plana, F., 2002, Synthesis of zeolites from coal fly ash: an overview, Int. J. Coal Geo., 50, 413-423. https://doi.org/10.1016/S0166-5162(02)00124-6
  27. Sinha, P. K., Panicker, P. K., Amalraj, R. V., Krishnasamy, V., 1995, Treatment of radioactive liquid waste containing cesium by indigenously available synthetic zeolites: A comparative study, Waste Manage., 15, 149-157. https://doi.org/10.1016/0956-053X(95)00014-Q
  28. Smiciklas, I., Dimovic, S., Plecas, I., 2007, Removal of $Cs^{1+}$, $Sr^{2+}$ and $Co^{2+}$ from aqueous solutions by adsorption on natural clinoptilolite, Clay Sci., 35, 139-144. https://doi.org/10.1016/j.clay.2006.08.004
  29. Sprynskyy, M., Boguslaw, B., Artur, T., Jacek, N., 2006, Study of the selection mechanism of heavy metal adsorption on clinoptilolite, J. Col. Inter. Sci. 304, 21-28. https://doi.org/10.1016/j.jcis.2006.07.068
  30. Veli, S., Alyuz, B., 2007, Adsorption of copper and zinc from aqueous solutions by using natural clay, J. hazard. mater. 149, 226-233. https://doi.org/10.1016/j.jhazmat.2007.04.109
  31. Wan, N. W. S., Kamari, A., Koay, Y. J., 2004, Equilibrium and kinetics studies of adsorption of copper on chitosan and chitosan/PVA beads, Int. J. Biol. Macromol., 34, 155-161. https://doi.org/10.1016/j.ijbiomac.2004.03.001
  32. Wang, S., Terdkiatburana, T., Tade, M. O., 2008, Adsorption of Cu(II), Pb(II) and humic acid on natural zeolite tuff in single and binary systems, Sepa. Purif. Tech., 62, 64-70. https://doi.org/10.1016/j.seppur.2008.01.004
  33. Yang, K., Zhang, X., Chao, C., Zhang, B., Liu, J., 2014, In-situ preparation of NaA zeolite/chitosan porous hybrid beads for removal of ammonium from aqueous solution, Carbo. Polym., 107, 103-109. https://doi.org/10.1016/j.carbpol.2014.02.001
  34. Yoon, J. S., 1995, A Study on parasitic cones of the northern parts of Jeju island, Korea, Bull. Mar. Res. Inst., Jeju Nat. Univ., 19, 25-38.