DOI QR코드

DOI QR Code

Light Scattering-enhanced Upconversion Efficiency in Silica Microparticles-embedded Polymeric Thin Film

고분자 박막 내에 담지 된 실리카 마이크로입자의 광산란 효과에 의한 광에너지 상향전환 효율 향상

Choe, Hyun-Seok;Lee, Hak-Lae;Lee, Myung-Soo;Park, Jeong-Min;Kim, Jae-Hyuk
최현석;이학래;이명수;박정민;김재혁

  • Received : 2018.11.26
  • Accepted : 2018.12.09
  • Published : 2019.02.10

Abstract

Triplet-triplet annihilation upconversion (TTA-UC) is a photochemical process wherein two or more low-energy photons are converted to a high-energy photon through a special energy transfer mechanism. Herein, we report a strategy to enhance the efficiency of TTA-UC through the light-scattering effect induced by silica microparticles (SM) embedded in polymeric thin films. By incorporating monodisperse uniform silica microparticles with a uniform size of 950 nm synthesized by $St{\ddot{o}}ber$-based seeded growth method into UC polymeric thin films, the UC intensity in the 430-570 nm range was enhanced by as much as 64% when irradiated by 635 nm laser. Analyzing the lifetime of PdTPBP phosphorescence revealed that the presence of SM in the UC layer does not affect triplet-triplet energy transfer (TTET) between sensitizers and acceptors, supporting the enhancement of TTA-UC originated from the light-scattering effect. On the other hand, the incorporation of SM in UC layer is shown to enhance the triplet-triplet annihilation (TTA) efficiency, which results in a 1.5-fold increase of the ${\Phi}_{UC}$, by scattering light source and thus increasing the number of excited photons to be utilized in TTA-UC process.

Keywords

Silica microparticles;Seeded growth;Triplet-triplet annihilation;Upconversion;Polymeric thin film

References

  1. S. P. Hill and K. Hanson, Harnessing molecular photon upconversion in a solar cell at sub-solar irradiance: Role of the redox mediator, J. Am. Chem. Soc., 139, 10988-10991 (2017). https://doi.org/10.1021/jacs.7b05462
  2. H. I. Kim, S. Weon, H. Kang, A. L. Hagstrom, O. S. Kwon, Y. S. Lee, W. Choi, and J. H. Kim, Plasmon-enhanced sub-bandgap photocatalysis via triplet-triplet annihilation upconversion for volatile organic compound degradation, Environ. Sci. Technol., 50, 11184-11192 (2016). https://doi.org/10.1021/acs.est.6b02729
  3. Q. Liu, M. Xu, T. Yang, B. Tian, X. Zhang, and F. Li, Highly photostable near-ir-excitation upconversion nanocapsules based on triplet-triplet annihilation for in vivo bioimaging application, ACS Appl. Mater. Interfaces, 10, 9883-9888 (2018). https://doi.org/10.1021/acsami.7b17929
  4. L. Huang, Y. Zhao, H. Zhang, K. Huang, J. Yang, and G. Han, Expanding anti-stokes shifting in triplet-triplet annihilation upconversion for in vivo anticancer prodrug activation, Angew. Chem. Int. Ed., 56, 14400-14404 (2017). https://doi.org/10.1002/anie.201704430
  5. T. N. Singh-Rachford and F. N. Castellano, Photon upconversion based on sensitized triplet-triplet annihilation, Coord. Chem. Rev., 254, 2560-2573 (2010). https://doi.org/10.1016/j.ccr.2010.01.003
  6. Y. Sasaki, S. Amemori, H. Kouno, N. Yanai, and N. Kimizuka, Near infrared-to-blue photon upconversion by exploiting direct S-T absorption of a molecular sensitizer, J. Mater. Chem. C, 5, 5063-5067 (2017). https://doi.org/10.1039/C7TC00827A
  7. V. Yakutkin, S. Aleshchenkov, S. Chernov, T. Miteva, G. Nelles, A. Cheprakov, and S. Baluschev, Towards the IR limit of the triplet-triplet annihilation-supported up-conversion: tetraanthraporphyrin, Chem. Eur. J., 14, 9846-9850 (2008). https://doi.org/10.1002/chem.200801305
  8. K. Mase, Y. Sasaki, Y. Sagara, N. Tamaoki, C. Weder, N. Yanai, and N. Kimizuka, Stimuli-responsive dual-color photon upconversion: a singlet-to-triplet absorption sensitizer in a soft luminescent cyclophane, Angew. Chem. Int. Ed., 57, 2806-2810 (2018). https://doi.org/10.1002/anie.201712644
  9. Z. Qu, P. Duan, J. Zhou, Y. Wang, and M. Liu, Photon upconversion in organic nanoparticles and subsequent amplification by plasmonic silver nanowires, Nanoscale, 10, 985-991 (2018). https://doi.org/10.1039/C7NR07340B
  10. T. N. Singh-Rachford and F. N. Castellano, Low power visible- to-UV upconversion, J. Phys. Chem. A, 113, 5912-5917 (2009). https://doi.org/10.1021/jp9021163
  11. N. Yanai, M. Kozue, S. Amemori, R. Kabe, C. Adachi, and N. Kimizuka, Increased vis-to-UV upconversion performance by energy level matching between a TADF donor and high triplet energy acceptors, J. Mater. Chem. C, 4, 6447-6451 (2016).
  12. F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri, F. Bruni, R. Simonutti, U. Kortshagen, and S. Brovelli, Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots, Nat. Photonics, 11, 177-185 (2017). https://doi.org/10.1038/nphoton.2017.5
  13. J. B. Ahn and S. T. Noh, The synthesis and characterization of thin film for anti-glare using silica particles, J. Korean Ind. Eng. Chem., 19, 685-689 (2008).
  14. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk'yanchuk, Directional visible light scattering by silicon nanoparticles, Nat. Commun., 4, 1527 (2013). https://doi.org/10.1038/ncomms2538
  15. T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer, Adv. Mater., 13, 1149-1152 (2001). https://doi.org/10.1002/1521-4095(200108)13:15<1149::AID-ADMA1149>3.0.CO;2-2
  16. T. Yamasaki, K. Sumioka, and T. Tsutsui, Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium, Appl. Phys. Lett., 76, 1243-1245 (2000). https://doi.org/10.1063/1.125997
  17. R. Tao, J. Zhao, F. Zhong, C. Zhang, W. Yang, and K. Xu, $H_{2}O_{2}$-activated triplet-triplet annihilation upconversion via modulation of the fluorescence quantum yields of the triplet acceptor and the triplet-triplet-energy-transfer efficiency, Chem. Commun., 51, 12403-12406 (2015). https://doi.org/10.1039/C5CC04325E
  18. Y. Han, Z. Lu, Z. Teng, J. Liang, Z. Guo, D. Wang, M. Y. Han, and W. Yang, Unraveling the growth mechanism of silica particles in the Stober method: in situ seeded growth model, Langmuir, 33, 5879-5890 (2017). https://doi.org/10.1021/acs.langmuir.7b01140
  19. W. Stober, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 26, 62-69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
  20. B. Zhao, C. Tian, Y. Zhang, T. Tang, and F. Wang, Size control of monodisperse nonporous silica particles by seed particle growth, Particuology, 9, 314-317 (2011). https://doi.org/10.1016/j.partic.2010.07.028
  21. S. H. Lee, M. A. Ayer, R. Vadrucci, C. Weder, and Y. C. Simon, Light upconversion by triplet-triplet annihilation in diphenylanthracene-based copolymers, Polym. Chem., 5, 6898-6904 (2014). https://doi.org/10.1039/C4PY00920G
  22. A. L. Hagstrom, H. L. Lee, M. S. Lee, H. S. Choe, J. Jung, B. G. Park, W. S. Han, J. S. Ko, J. H. Kim, and J. H. Kim, Flexible and micropatternable triplet-triplet annihilation upconversion thin films for photonic device integration and anticounterfeiting applications, ACS Appl. Mater. Interfaces, 10, 8985-8992 (2018). https://doi.org/10.1021/acsami.7b17789
  23. T. Ogawa, M. Hosoyamada, B. Yurash, T. Q. Nguyen, N. Yanai, and N. Kimizuka, Donor-acceptor-collector ternary crystalline films for efficient solid-state photon upconversion, J. Am. Chem. Soc., 140, 8788-8796 (2018). https://doi.org/10.1021/jacs.8b04542

Acknowledgement

Supported by : 한국연구재단