DOI QR코드

DOI QR Code

에너지화 열가소성 탄성체에 사용될 수 있는 알콕시 계열과 알킬 아민 계열 GAP Copolymer의 합성 및 분석

Synthesis and Characterization of Alkoxy and Alkylamino GAP Copolymer for Energetic Thermoplastic Elastomer (ETPE)

  • 투고 : 2018.11.30
  • 심사 : 2018.12.06
  • 발행 : 2019.02.10

초록

에너지화 열가소성 탄성체 제조에 사용될 수 있는 새로운 계열의 glycidyl azide polymer (GAP)을 모색하기 위해 전구체인 poly(epichlorohydrin) (PECH)에 친핵체인 아지드기와 알콕시 및 알킬 아민을 도입하여 4가지 GAP copolymer polyol을 합성하고 물성에 대하여 고찰하였다. 이 GAP copolymer 합성반응은 이종의 친핵체를 1단계 반응으로 동시에 치환하여 미반응 sodium azide가 남지 않는 친환경적이며 효율적인 합성법으로 평가할 수 있다. 역개폐 짝풀림(inverse gated decoupling) $^{13}C$ NMR 분석법과 Fourier transform infrared (FT-IR) 분석법으로 상대적 치환율을 정량적으로 분석하였으며 반응 진행도를 모니터링 하였다. 합성된 GAP copolymer의 유리전이온도와 분자량은 differential scanning calorimetry (DSC)와 gel permeation chromatography (GPC)로 분석하였다. 합성된 poly($GA_{0.8}-butoxide_{0.2}$), poly($GA_{0.7}-n-butylamine_{0.3}$), poly($GA_{0.7}-dipropylamine_{0.3}$), poly($GA_{0.7}-morpholine_{0.3}$)의 유리전이온도는 $-39^{\circ}C$에서 $-26^{\circ}C$ 범위의 값을 나타내었다.

키워드

Solid propellant;Glycidyl azide polymer;Glycidyl azide polymer copolymer;Poly(epichlorohydrin);Energetic thermoplastic elastomer

GOOOB2_2019_v30n1_81_f0001.png 이미지

Figure 1. Examples of energetic polymer binder.

GOOOB2_2019_v30n1_81_f0002.png 이미지

Figure 2. Structure design for the GAP copolymers by one step substitution reaction.

GOOOB2_2019_v30n1_81_f0003.png 이미지

Figure 3. Synthetic process of alkoxide based GAP copolymer.

GOOOB2_2019_v30n1_81_f0004.png 이미지

Figure 4. IR spectrum comparison of poly(GA0.8-butoxide0.2) (1).

GOOOB2_2019_v30n1_81_f0005.png 이미지

Figure 5. 13C NMR spectrum of poly(GA0.8-butoxide0.2) (1) in CDCl3.

GOOOB2_2019_v30n1_81_f0006.png 이미지

Figure 6. Glass transition temperature of poly(GA0.8-butoxide0.2) (1).

GOOOB2_2019_v30n1_81_f0007.png 이미지

Figure 7. Synthetic process of alkyl amine based GAP copolymer.

GOOOB2_2019_v30n1_81_f0008.png 이미지

Figure 8. IR spectrum comparison of poly(GA0.7-n-butyl amine0.3) (3).

GOOOB2_2019_v30n1_81_f0009.png 이미지

Figure 9. IR spectrum comparison of poly(GA0.7-dipropyl amine0.3) (4).

GOOOB2_2019_v30n1_81_f0010.png 이미지

Figure 10. IR spectrum comparison of poly(GA0.7-morpholine0.3) (5).

GOOOB2_2019_v30n1_81_f0011.png 이미지

Figure 11. 13C NMR spectrum of poly(GA0.7-n-butyl amine0.3) (3) inDMSO-d6.

GOOOB2_2019_v30n1_81_f0012.png 이미지

Figure 12. 13C NMR spectrum of poly(GA0.7-dipropyl amine0.3) (4) inDMSO-d6.

GOOOB2_2019_v30n1_81_f0013.png 이미지

Figure 13. 13C NMR spectrum of poly(GA0.7-morpholine0.3) (5) in DMSO-d6.

GOOOB2_2019_v30n1_81_f0014.png 이미지

Figure 14. Glass transition temperature of poly(GAP0.7-alkyl amine0.3).

Table 1. Amount of Reagents in the Synthesis of Alkyl Amino GAP Copolymer

GOOOB2_2019_v30n1_81_t0001.png 이미지

Table 2. Molecular Weight Comparison of GAP Copolymer by GPC

GOOOB2_2019_v30n1_81_t0002.png 이미지

Table 3. Comparison of Azido Group and Amine Group Ratio in 13C NMR Spectrum

GOOOB2_2019_v30n1_81_t0003.png 이미지

Table 4. Molecular Weight Comparison of GAP Copolymer by GPC

GOOOB2_2019_v30n1_81_t0004.png 이미지

참고문헌

  1. M. S. Eroglu and O. Guven, Characterization of network structure of poly(glycidyl azide) elastomers by swelling, solubility and mechanical measurements, Polymer, 39, 1173-1176 (1998). https://doi.org/10.1016/S0032-3861(97)00369-8
  2. J. Deng, G. Li, M. Xia, Y. Lan, and Y. Luo, Improvement of mechanical characteristics of glycidyl azide polymer binder system by addition of flexible polyether, J. Appl. Polym. Sci., 133, 43840 (2016).
  3. E. Landsem, T. L. Jensen, F. K. Hansen, E. Unneberg, and T. E. Kristensen, Neutral polymeric bonding agents (NPBA) and their use in smokeless composite rocket propellants based on HMX-GAP-BuNENA, Propellants Explos. Pyrotechnics, 37, 581-591 (2012). https://doi.org/10.1002/prep.201100136
  4. S. Filippi, L. Mori, M. Cappello, and G. Polacco, Glycidyl azide-butadiene block copolymers: synthesis from the homopolymers and a chain extender, Propellants Explos. Pyrotechnics, 42, 826-835 (2017). https://doi.org/10.1002/prep.201600263
  5. Y. Wu, Y. Luo, and Z. Ge, Properties and application of a novel type of glycidyl azide polymer (GAP)-modified nitrocellulose powders, Propellants Explos. Pyrotechnics, 40, 67-73 (2015). https://doi.org/10.1002/prep.201400005
  6. Z. Zhang, N. Luo, J. Deng, Z. Ge, and Y. Luo, A kind of bonding functional energetic thermoplastic elastomers based on glycidyl azide polymer, J. Elastomers Plast., 48, 728-738 (2016). https://doi.org/10.1177/0095244315618699
  7. Y. Zhou, X.-P. Long, and Q.-X. Zeng, Simulation studies of the interfaces of incompatible glycidyl azide polymer/hydroxyl-terminated polybutadiene blends by dissipative particle dynamics. I. The effect of block copolymers and plasticizers, J. Appl. Polym. Sci., 125, 1530-1537 (2012). https://doi.org/10.1002/app.36370
  8. Y. M. Mohan, Y. Mani, and K. M. Raju, Synthesis of azido polymers as potential energetic propellant binders, Des. Monomers Polym., 9, 201-236 (2006). https://doi.org/10.1163/156855506777351045
  9. Y. M. Mohan, K. M. Raju, and B. Sreedhar, Synthesis and characterization of glycidyl azide polymer with enhanced azide content, Int. J. Polym. Mater., 55, 441-455 (2006). https://doi.org/10.1080/009140390970486
  10. M. Cappello, S. Filippi, L. Mori, and G. Polacco, Glycidyl azide-butadiene block copolymers: 2 Synthesis from a Mesylated Precursor, Propellants Explos. Pyrotechnics, 42, 974-981 (2017). https://doi.org/10.1002/prep.201700093
  11. Y. M. Mohan, M. P. Raju, and K. M. Raju, Synthesis, spectral and DSC analysis of glycidyl azide polymers containing different initiating diol units, J. Appl. Polym. Sci., 93, 2157-2163 (2004). https://doi.org/10.1002/app.20682
  12. I. K. Varma, High energy binders: glycidyl azide and allyl azide polymer, Macromol. Symp., 210, 121-129 (2004). https://doi.org/10.1002/masy.200450614
  13. B. Gaur, B. Lochab, V. Choudhary, and I. K. Varma, Azido polymers-energetic binders for solid rocket propellants, J. Macro. Sci. C, C43, 505-545 (2003).
  14. S. K. Sahu, S. P. Panda, D. S. Sadafule, C. G. Kumbhar, S. G. Kulkarni, and J. V. Thakur, Thermal and photodegradation of glycidyl azide polymers, Polym. Degrad. Stab., 62, 495-500 (1998). https://doi.org/10.1016/S0141-3910(98)00033-0
  15. J.-S. You and S.-T. Noh, Thermal and mechanical properties of poly(glycidyl azide)/polycaprolactone copolyol-based energetic thermoplastic polyurethanes, Macromol. Res., 18, 1081-1087 (2010). https://doi.org/10.1007/s13233-010-1104-x
  16. A. M. Kawamoto, J. A. Saboia Holanda, U. Barbieri, G. Polacco, T. Keicher, H. Krause, and M. Kaiser, Synthesis and characterization of glycidyl azide-r-(3,3-bis(azidomethyl)oxetane) copolymers, Propellants Explos. Pyrotechnics, 33, 365-372 (2008). https://doi.org/10.1002/prep.200700221
  17. J.-F. Pei, F.-Q. Zhao, X.-D. Song, X.-N. Ren, H.-X. Gao, T. An, J. An, and R.-Z. Hu, Effects of nano-CuO particles on thermal decomposition behavior and decomposition mechanism of BAMO-GAP copolymer, J. Anal. Appl. Pyrolysis, 112, 88-93 (2015). https://doi.org/10.1016/j.jaap.2015.02.017
  18. Y. Zhang, J. Zhao, P. Yang, S. He, and H. Huang, Synthesis and characterization of energetic GAP-b-PAEMA block copolymer, Polym. Eng. Sci., 52, 768-773 (2012). https://doi.org/10.1002/pen.22140
  19. G. Li, H. Dong, M. Liu, M. Xia, C. Chai, and Y. Luo, Amphiphilic block copolymer poly(lactic acid)-block-(glycidylazide polymer)-block-polystyrene: synthesis and self-assembly, Polym. Int., 66, 1037-1043 (2017). https://doi.org/10.1002/pi.5358
  20. Y. M. Mohan and K. M. Raju, Synthesis and characterization of HTPB-GAP cross-linked co-polymers, Des. Monomers Polym., 8, 159-175 (2012). https://doi.org/10.1163/1568555053603215
  21. S. Pisharath and H. G. Ang, Synthesis and thermal decomposition of GAP-Poly(BAMO) copolymer, Polym. Degrad. Stab., 92, 1365-1377 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.03.016
  22. B. S. Min and S. W. Ko, Characterization of segmented block copolyurethane network based on glycidyl azide polymer and polycaprolactone, Macromol. Res., 15, 225-233 (2007). https://doi.org/10.1007/BF03218780
  23. B. Li, Y. Zhao, G. Liu, X. Li, and Y. Luo, Mechanical properties and thermal decomposition of PBAMO/GAP random block ETPE, J. Therm. Anal. Calorim., 126, 717-724 (2016). https://doi.org/10.1007/s10973-016-5524-5
  24. R. G. Stater and D. M. Husband, Molecular structure of the ideal solid propellant binder, Propellants Explos. Pyrotechnics, 16, 167-176 (1991). https://doi.org/10.1002/prep.19910160404
  25. Y. M. Mohan and K. M. Raju, Synthesis and characterization of GAP-THF copolymers, Int. J. Polym. Mater., 55, 203-217 (2006). https://doi.org/10.1080/009140390925134
  26. Y. M. Mohan, M. P. Raju, and K. M. Raju, Synthesis and characterization of GAP-PEG copolymers, Int. J. Polym. Mater., 54, 651-666 (2005). https://doi.org/10.1080/00914030490499134
  27. M. Xu, Z. Ge, X. Lu, H. Mo, Y. Ji, and H. Hu, Fluorinated glycidyl azide polymers as potential energetic binders, RSC Adv., 7, 47271-47278 (2017). https://doi.org/10.1039/C7RA08929E
  28. H. Kim, Y. Jang, S. Noh, J. Jeong, D. Kim, B. Kang, T. Kang, H. Choi, and H. Rhee, Ecofriendly synthesis and characterization of carboxylated GAP copolymers, RSC Adv., 8, 20032-20038 (2018). https://doi.org/10.1039/C8RA03643H
  29. M. Cao, T. Li, J. Liang, Z. Wu, X. Zhou, and G. Du, A $^{13}C$-NMR study on the 1,3-dimethylolurea-phenol co-condensation reaction: a model for amino-phenolic co-condensed resin synthesis, Polymers, 8, 391 (2016). https://doi.org/10.3390/polym8110391
  30. M. Perez, J. C. Ronda, J. A. Reina, and A. Serra, Studies on the microstructure of the polymer obtained by chemical modification of poly(oxy-1-chloromethyl-ethylene-co-oxyethylene) (PECH-PEO) with phenolate, Polymer, 41, 2349-2358 (2000). https://doi.org/10.1016/S0032-3861(99)00423-1

과제정보

연구 과제 주관 기관 : 방위사업청