Synthesis and Characterization of Alkoxy and Alkylamino GAP Copolymer for Energetic Thermoplastic Elastomer (ETPE)

에너지화 열가소성 탄성체에 사용될 수 있는 알콕시 계열과 알킬 아민 계열 GAP Copolymer의 합성 및 분석

  • Lim, Minkyung (Department of Bionanotechnology, Hanyang University) ;
  • Jang, Yoorim (Department of Bionanotechnology, Hanyang University) ;
  • Kim, Hancheul (Department of Bionanotechnology, Hanyang University) ;
  • Rhee, Hakjune (Department of Bionanotechnology, Hanyang University) ;
  • Noh, Sitae (Department of Materials and Chemical Engineering, Hanyang University)
  • 임민경 (한양대학교 바이오나노학과) ;
  • 장유림 (한양대학교 바이오나노학과) ;
  • 김한철 (한양대학교 바이오나노학과) ;
  • 이학준 (한양대학교 바이오나노학과) ;
  • 노시태 (한양대학교 재료화학공학과)
  • Received : 2018.11.30
  • Accepted : 2018.12.06
  • Published : 2019.02.10


In this study, synthetic methods and physical properties for a new class of glycidyl azide polymer (GAP) were investigated for energetic thermoplastic elastomers (ETPE). Four kinds of GAP copolymer polyols were synthesized by introducing nucleophiles such as azide, alkoxide and alkyl amine into poly(epichlorohydrin) (PECH). The GAP copolymer synthetic reaction can be evaluated as an environmental benign and efficient synthetic method due to the simultaneous one-step reaction using two kinds of nucleophiles and the complete consumption of sodium azide. The relative stoichiometric substitution ratio analysis and the progress of reaction were checked and monitored by inverse gated decoupled $^{13}C$ NMR and Fourier transform infrared (FT-IR) spectroscopy. The glass transition temperature and molecular weight were measured by differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) analysis. The synthesized poly($GA_{0.8}-butoxide_{0.2}$), poly($GA_{0.7}-n-butylamine_{0.3}$), poly($GA_{0.7}-dipropylamine_{0.3}$) and poly($GA_{0.7}-morpholine_{0.3}$) had a glass transition temperature ranged from -39 to $-26^{\circ}C$.

GOOOB2_2019_v30n1_81_f0001.png 이미지

Figure 1. Examples of energetic polymer binder.

GOOOB2_2019_v30n1_81_f0002.png 이미지

Figure 2. Structure design for the GAP copolymers by one step substitution reaction.

GOOOB2_2019_v30n1_81_f0003.png 이미지

Figure 3. Synthetic process of alkoxide based GAP copolymer.

GOOOB2_2019_v30n1_81_f0004.png 이미지

Figure 4. IR spectrum comparison of poly(GA0.8-butoxide0.2) (1).

GOOOB2_2019_v30n1_81_f0005.png 이미지

Figure 5. 13C NMR spectrum of poly(GA0.8-butoxide0.2) (1) in CDCl3.

GOOOB2_2019_v30n1_81_f0006.png 이미지

Figure 6. Glass transition temperature of poly(GA0.8-butoxide0.2) (1).

GOOOB2_2019_v30n1_81_f0007.png 이미지

Figure 7. Synthetic process of alkyl amine based GAP copolymer.

GOOOB2_2019_v30n1_81_f0008.png 이미지

Figure 8. IR spectrum comparison of poly(GA0.7-n-butyl amine0.3) (3).

GOOOB2_2019_v30n1_81_f0009.png 이미지

Figure 9. IR spectrum comparison of poly(GA0.7-dipropyl amine0.3) (4).

GOOOB2_2019_v30n1_81_f0010.png 이미지

Figure 10. IR spectrum comparison of poly(GA0.7-morpholine0.3) (5).

GOOOB2_2019_v30n1_81_f0011.png 이미지

Figure 11. 13C NMR spectrum of poly(GA0.7-n-butyl amine0.3) (3) inDMSO-d6.

GOOOB2_2019_v30n1_81_f0012.png 이미지

Figure 12. 13C NMR spectrum of poly(GA0.7-dipropyl amine0.3) (4) inDMSO-d6.

GOOOB2_2019_v30n1_81_f0013.png 이미지

Figure 13. 13C NMR spectrum of poly(GA0.7-morpholine0.3) (5) in DMSO-d6.

GOOOB2_2019_v30n1_81_f0014.png 이미지

Figure 14. Glass transition temperature of poly(GAP0.7-alkyl amine0.3).

Table 1. Amount of Reagents in the Synthesis of Alkyl Amino GAP Copolymer

GOOOB2_2019_v30n1_81_t0001.png 이미지

Table 2. Molecular Weight Comparison of GAP Copolymer by GPC

GOOOB2_2019_v30n1_81_t0002.png 이미지

Table 3. Comparison of Azido Group and Amine Group Ratio in 13C NMR Spectrum

GOOOB2_2019_v30n1_81_t0003.png 이미지

Table 4. Molecular Weight Comparison of GAP Copolymer by GPC

GOOOB2_2019_v30n1_81_t0004.png 이미지


Supported by : 방위사업청


  1. M. S. Eroglu and O. Guven, Characterization of network structure of poly(glycidyl azide) elastomers by swelling, solubility and mechanical measurements, Polymer, 39, 1173-1176 (1998).
  2. J. Deng, G. Li, M. Xia, Y. Lan, and Y. Luo, Improvement of mechanical characteristics of glycidyl azide polymer binder system by addition of flexible polyether, J. Appl. Polym. Sci., 133, 43840 (2016).
  3. E. Landsem, T. L. Jensen, F. K. Hansen, E. Unneberg, and T. E. Kristensen, Neutral polymeric bonding agents (NPBA) and their use in smokeless composite rocket propellants based on HMX-GAP-BuNENA, Propellants Explos. Pyrotechnics, 37, 581-591 (2012).
  4. S. Filippi, L. Mori, M. Cappello, and G. Polacco, Glycidyl azide-butadiene block copolymers: synthesis from the homopolymers and a chain extender, Propellants Explos. Pyrotechnics, 42, 826-835 (2017).
  5. Y. Wu, Y. Luo, and Z. Ge, Properties and application of a novel type of glycidyl azide polymer (GAP)-modified nitrocellulose powders, Propellants Explos. Pyrotechnics, 40, 67-73 (2015).
  6. Z. Zhang, N. Luo, J. Deng, Z. Ge, and Y. Luo, A kind of bonding functional energetic thermoplastic elastomers based on glycidyl azide polymer, J. Elastomers Plast., 48, 728-738 (2016).
  7. Y. Zhou, X.-P. Long, and Q.-X. Zeng, Simulation studies of the interfaces of incompatible glycidyl azide polymer/hydroxyl-terminated polybutadiene blends by dissipative particle dynamics. I. The effect of block copolymers and plasticizers, J. Appl. Polym. Sci., 125, 1530-1537 (2012).
  8. Y. M. Mohan, Y. Mani, and K. M. Raju, Synthesis of azido polymers as potential energetic propellant binders, Des. Monomers Polym., 9, 201-236 (2006).
  9. Y. M. Mohan, K. M. Raju, and B. Sreedhar, Synthesis and characterization of glycidyl azide polymer with enhanced azide content, Int. J. Polym. Mater., 55, 441-455 (2006).
  10. M. Cappello, S. Filippi, L. Mori, and G. Polacco, Glycidyl azide-butadiene block copolymers: 2 Synthesis from a Mesylated Precursor, Propellants Explos. Pyrotechnics, 42, 974-981 (2017).
  11. Y. M. Mohan, M. P. Raju, and K. M. Raju, Synthesis, spectral and DSC analysis of glycidyl azide polymers containing different initiating diol units, J. Appl. Polym. Sci., 93, 2157-2163 (2004).
  12. I. K. Varma, High energy binders: glycidyl azide and allyl azide polymer, Macromol. Symp., 210, 121-129 (2004).
  13. B. Gaur, B. Lochab, V. Choudhary, and I. K. Varma, Azido polymers-energetic binders for solid rocket propellants, J. Macro. Sci. C, C43, 505-545 (2003).
  14. S. K. Sahu, S. P. Panda, D. S. Sadafule, C. G. Kumbhar, S. G. Kulkarni, and J. V. Thakur, Thermal and photodegradation of glycidyl azide polymers, Polym. Degrad. Stab., 62, 495-500 (1998).
  15. J.-S. You and S.-T. Noh, Thermal and mechanical properties of poly(glycidyl azide)/polycaprolactone copolyol-based energetic thermoplastic polyurethanes, Macromol. Res., 18, 1081-1087 (2010).
  16. A. M. Kawamoto, J. A. Saboia Holanda, U. Barbieri, G. Polacco, T. Keicher, H. Krause, and M. Kaiser, Synthesis and characterization of glycidyl azide-r-(3,3-bis(azidomethyl)oxetane) copolymers, Propellants Explos. Pyrotechnics, 33, 365-372 (2008).
  17. J.-F. Pei, F.-Q. Zhao, X.-D. Song, X.-N. Ren, H.-X. Gao, T. An, J. An, and R.-Z. Hu, Effects of nano-CuO particles on thermal decomposition behavior and decomposition mechanism of BAMO-GAP copolymer, J. Anal. Appl. Pyrolysis, 112, 88-93 (2015).
  18. Y. Zhang, J. Zhao, P. Yang, S. He, and H. Huang, Synthesis and characterization of energetic GAP-b-PAEMA block copolymer, Polym. Eng. Sci., 52, 768-773 (2012).
  19. G. Li, H. Dong, M. Liu, M. Xia, C. Chai, and Y. Luo, Amphiphilic block copolymer poly(lactic acid)-block-(glycidylazide polymer)-block-polystyrene: synthesis and self-assembly, Polym. Int., 66, 1037-1043 (2017).
  20. Y. M. Mohan and K. M. Raju, Synthesis and characterization of HTPB-GAP cross-linked co-polymers, Des. Monomers Polym., 8, 159-175 (2012).
  21. S. Pisharath and H. G. Ang, Synthesis and thermal decomposition of GAP-Poly(BAMO) copolymer, Polym. Degrad. Stab., 92, 1365-1377 (2007).
  22. B. S. Min and S. W. Ko, Characterization of segmented block copolyurethane network based on glycidyl azide polymer and polycaprolactone, Macromol. Res., 15, 225-233 (2007).
  23. B. Li, Y. Zhao, G. Liu, X. Li, and Y. Luo, Mechanical properties and thermal decomposition of PBAMO/GAP random block ETPE, J. Therm. Anal. Calorim., 126, 717-724 (2016).
  24. R. G. Stater and D. M. Husband, Molecular structure of the ideal solid propellant binder, Propellants Explos. Pyrotechnics, 16, 167-176 (1991).
  25. Y. M. Mohan and K. M. Raju, Synthesis and characterization of GAP-THF copolymers, Int. J. Polym. Mater., 55, 203-217 (2006).
  26. Y. M. Mohan, M. P. Raju, and K. M. Raju, Synthesis and characterization of GAP-PEG copolymers, Int. J. Polym. Mater., 54, 651-666 (2005).
  27. M. Xu, Z. Ge, X. Lu, H. Mo, Y. Ji, and H. Hu, Fluorinated glycidyl azide polymers as potential energetic binders, RSC Adv., 7, 47271-47278 (2017).
  28. H. Kim, Y. Jang, S. Noh, J. Jeong, D. Kim, B. Kang, T. Kang, H. Choi, and H. Rhee, Ecofriendly synthesis and characterization of carboxylated GAP copolymers, RSC Adv., 8, 20032-20038 (2018).
  29. M. Cao, T. Li, J. Liang, Z. Wu, X. Zhou, and G. Du, A $^{13}C$-NMR study on the 1,3-dimethylolurea-phenol co-condensation reaction: a model for amino-phenolic co-condensed resin synthesis, Polymers, 8, 391 (2016).
  30. M. Perez, J. C. Ronda, J. A. Reina, and A. Serra, Studies on the microstructure of the polymer obtained by chemical modification of poly(oxy-1-chloromethyl-ethylene-co-oxyethylene) (PECH-PEO) with phenolate, Polymer, 41, 2349-2358 (2000).