Ependymal Cells Require Anks1a for Their Proper Development

Park, Sunjung;Lee, Haeryung;Lee, Jiyeon;Park, Eunjeong;Park, Soochul

  • Received : 2018.11.22
  • Accepted : 2019.01.31
  • Published : 2019.03.31


Ependymal cells constitute the multi-ciliated epithelium, which lines the brain ventricular lumen. Although ependymal cells originate from radial glial cells in the perinatal rodent brain, the exact mechanisms underlying the full differentiation of ependymal cells are poorly understood. In this report, we present evidence that the Anks1a phosphotyrosine binding domain (PTB) adaptor is required for the proper development of ependymal cells in the rodent postnatal brain. Anks1a gene trap targeted LacZ reporter analysis revealed that Anks1a is expressed prominently in the ventricular region of the early postnatal brain and that its expression is restricted to mature ependymal cells during postnatal brain development. In addition, Anks1a-deficient ependymal cells were shown to possess type B cell characteristics, suggesting that ependymal cells require Anks1a in order to be fully differentiated. Finally, Anks1a overexpression in the lateral wall of the neonatal brain resulted in an increase in the number of ependymal cells during postnatal brain development. Altogether, our results suggest that ependymal cells require Anks1a PTB adaptor for their proper development.


Anks1a;brain development;ependymal cells;PTB adaptor


  1. Bayly, R., and Axelrod, J.D. (2011). Pointing in the right direction: New developments in the field of planar cell polarity. Nat. Rev. Genet. 12, 385-391.
  2. Carlen, M., Meletis, K., Goritz, C., Darsalia, V., Evergren, E., Tanigaki, K., Amendola, M., Barnabe-Heider, F., Yeung, M.S., Naldini, L., et al. (2009). Forebrain ependymal cells are notch-dependent and generate neuroblasts and astrocytes after stroke. Nat. Neurosci. 12, 259-267.
  3. Codega, P., Silva-Vargas, V., Paul, A., Maldonado-Soto, A.R., Deleo, A.M., Pastrana, E., and Doetsch, F. (2014). Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 82, 545-559.
  4. Conover, J.C., Doetsch, F., Garcia-Verdugo, J.M., Gale, N.W., Yancopoulos, G.D., and Alvarez-Buylla, A. (2000). Disruption of eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat. Neurosci. 3, 1091-1097.
  5. De Rubeis, S., He, X., Goldberg, A.P., Poultney, C.S., Samocha, K., Cicek, A.E., Kou, Y., Liu, L., Fromer, M., Walker, S., et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209-215.
  6. Feliciano, D.M., Lafourcade, C.A., and Bordey, A. (2013). Neonatal subventricular zone electroporation. J. Vis. Exp. 11, pii: 50197.
  7. Fromer, M., Pocklington, A.J., Kavanagh, D.H., Williams, H.J., Dwyer, S., Gormley, P., Georgieva, L., Rees, E., Palta, P., Ruderfer, D.M., et al. (2014). De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 179-184.
  8. Guirao, B., Meunier, A., Mortaud, S., Aguilar, A., Corsi, J.M., Strehl, L., Hirota, Y., Desoeuvre, A., Boutin, C., Han, Y.G., et al. (2010). Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nat. Cell Biol. 12, 341-350.
  9. Holmberg, J., Armulik, A., Senti, K.A., Edoff, K., Spalding, K., Momma, S., Cassidy, R., Flanagan, J.G., and Frisen, J. (2005). Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev. 19, 462-471.
  10. Ihrie, R.A., and Alvarez-Buylla, A. (2011). Lake-front property: A unique germinal niche by the lateral ventricles of the adult brain. Neuron 70, 674-686.
  11. Jacquet, B.V., Salinas-Mondragon, R., Liang, H., Therit, B., Buie, J.D., Dykstra, M., Campbell, K., Ostrowski, L.E., Brody, S.L., and Ghashghaei, H.T. (2009). FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain. Development 136, 4021-4031.
  12. Kim, J., Lee, H., Kim, Y., Yoo, S., Park, E., and Park, S. (2010). The SAM domains of anks family proteins are critically involved in modulating the degradation of EphA receptors. Mol. Cell Biol. 30, 1582-1592.
  13. Kriegstein, A., and Alvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149-184.
  14. Kuo, C.T., Mirzadeh, Z., Soriano-Navarro, M., Rasin, M., Wang, D., Shen, J., Sestan, N., Garcia-Verdugo, J., Alvarez-Buylla, A., Jan, L.Y., et al. (2006). Postnatal deletion of numb/numblike reveals repair and remodeling capacity in the subventricular neurogenic niche. Cell 127, 1253-1264.
  15. Lavado, A., and Oliver, G. (2011). Six3 is required for ependymal cell maturation. Development 138, 5291-5300.
  16. Lee, H., Noh, H., Mun, J., Gu, C., Sever, S., and Park, S. (2016). Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis. Nat. Commun. 7, 12799.
  17. Manzini, M.C., and Walsh, C.A. (2011). What disorders of cortical development tell us about the cortex: One plus one does not always make two. Curr. Opin. Genet. Dev. 21, 333-339.
  18. Mirzadeh, Z., Doetsch, F., Sawamoto, K., Wichterle, H., and Alvarez-Buylla, A. (2010). The subventricular zone en-face: Wholemount staining and ependymal flow. J. Vis. Exp. 6, pii: 1938.
  19. Mirzadeh, Z., Han, Y.G., Soriano-Navarro, M., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (2010). Cilia organize ependymal planar polarity. J. Neurosci. 30, 2600-2610.
  20. Neale, B.M., Kou, Y., Liu, L., Ma'ayan, A., Samocha, K.E., Sabo, A., Lin, C.F., Stevens, C., Wang, L.S., Makarov, V., et al. (2012). Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242-245.
  21. Noh, H., Lee, H., Park, E., and Park, S. (2016). Proper closure of the optic fissure requires ephrin A5-EphB2-JNK signaling. Development 143, 461-472.
  22. Ohata, S., and Alvarez-Buylla, A. (2016). Planar organization of multiciliated ependymal (E1) cells in the brain ventricular epithelium. Trends Neurosci. 39, 543-551.
  23. Paez-Gonzalez, P., Abdi, K., Luciano, D., Liu, Y., Soriano-Navarro, M., Rawlins, E., Bennett, V., Garcia-Verdugo, J.M., and Kuo, C.T. (2011). Ank3-dependent SVZ niche assembly is required for the continued production of new neurons. Neuron 71, 61-75.
  24. Park, S., Lee, H., and Park, S. (2015). In vivo expression of the PTB-deleted odin mutant results in hydrocephalus. Mol. Cells 38, 426-431.
  25. Shin, J., Gu, C., Park, E., and Park, S. (2007). Identification of phosphotyrosine binding domain-containing proteins as novel downstream targets of the EphA8 signaling function. Mol. Cell Biol. 27, 8113-8126.
  26. Spassky, N., Merkle, F.T., Flames, N., Tramontin, A.D., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (2005). Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J. Neurosci. 25, 10-18.
  27. Spassky, N., and Meunier, A. (2017). The development and functions of multiciliated epithelia. Nat. Rev. Mol. Cell Biol. 18, 423-436.
  28. Tissir, F., Qu, Y., Montcouquiol, M., Zhou, L., Komatsu, K., Shi, D., Fujimori, T., Labeau, J., Tyteca, D., Courtoy, P., et al. (2010). Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat. Neurosci. 13, 700-707.
  29. Tong, J., Sydorskyy, Y., St-Germain, J.R., Taylor, P., Tsao, M.S., and Moran, M.F. (2013). Odin (ANKS1A) modulates EGF receptor recycling and stability. PLoS One. 8, e64817.
  30. Uhlik, M.T., Temple, B., Bencharit, S., Kimple, A.J., Siderovski, D.P., and Johnson, G.L. (2005). Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J. Mol. Biol. 345, 1-20.


Supported by : National Research Foundation of Korea (NRF)