DOI QR코드

DOI QR Code

Multi-level remodeling of transcriptional landscapes in aging and longevity

  • Lai, Rochelle W. (Leonard Davis School of Gerontology, University of Southern California) ;
  • Lu, Ryan (Leonard Davis School of Gerontology, University of Southern California) ;
  • Danthi, Prakroothi S. (Leonard Davis School of Gerontology, University of Southern California) ;
  • Bravo, Juan I. (Leonard Davis School of Gerontology, University of Southern California) ;
  • Goumba, Alexandre (Leonard Davis School of Gerontology, University of Southern California) ;
  • Sampathkumar, Nirmal Kumar (Leonard Davis School of Gerontology, University of Southern California) ;
  • Benayoun, Berenice A. (Leonard Davis School of Gerontology, University of Southern California)
  • Received : 2018.10.13
  • Published : 2019.01.31

Abstract

In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans.

Acknowledgement

Supported by : NIA

References

  1. Benayoun BA, Pollina EA and Brunet A (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16, 593-610 https://doi.org/10.1038/nrm4048
  2. Booth LN and Brunet A (2016) The Aging Epigenome. Mol Cell 62, 728-744 https://doi.org/10.1016/j.molcel.2016.05.013
  3. Pal S and Tyler JK (2016) Epigenetics and aging. Sci Adv 2, e1600584 https://doi.org/10.1126/sciadv.1600584
  4. Sen P, Shah PP, Nativio R and Berger SL (2016) Epigenetic Mechanisms of Longevity and Aging. Cell 166, 822-839 https://doi.org/10.1016/j.cell.2016.07.050
  5. Kennedy BK, Berger SL, Brunet A et al (2014) Geroscience: linking aging to chronic disease. Cell 159, 709-713 https://doi.org/10.1016/j.cell.2014.10.039
  6. Lopez-Otin C, Blasco MA, Partridge L, Serrano M and Kroemer G (2013) The hallmarks of aging. Cell 153, 1194-1217 https://doi.org/10.1016/j.cell.2013.05.039
  7. Mortimer RK and Johnston JR (1959) Life span of individual yeast cells. Nature 183, 1751-1752 https://doi.org/10.1038/1831751a0
  8. Hayflick L and Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585-621 https://doi.org/10.1016/0014-4827(61)90192-6
  9. Burtner CR and Kennedy BK (2010) Progeria syndromes and ageing: what is the connection? Nat Rev Mol Cell Biol 11, 567-578 https://doi.org/10.1038/nrm2944
  10. Austad SN and Fischer KE (2016) Sex Differences in Lifespan. Cell Metab 23, 1022-1033 https://doi.org/10.1016/j.cmet.2016.05.019
  11. El Assar M, Angulo J and Rodriguez-Manas L (2013) Oxidative stress and vascular inflammation in aging. Free Radic Biol Med 65, 380-401 https://doi.org/10.1016/j.freeradbiomed.2013.07.003
  12. Ge W, Li D, Gao Y and Cao X (2015) The Roles of Lysosomes in Inflammation and Autoimmune Diseases. Int Rev Immunol 34, 415-431 https://doi.org/10.3109/08830185.2014.936587
  13. Yamaoka M, Maeda N, Nakamura S et al (2013) Gene expression levels of S100 protein family in blood cells are associated with insulin resistance and inflammation (Peripheral blood S100 mRNAs and metabolic syndrome). Biochem Biophys Res Commun 433, 450-455 https://doi.org/10.1016/j.bbrc.2013.02.096
  14. McIlwain DR, Berger T and Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5, a008656
  15. Gragnani A, Cezillo MV, da Silva ID, de Noronha SM, Correa-Noronha SA and Ferreira LM (2014) Gene expression profile of cytokines and receptors of inflammation from cultured keratinocytes of burned patients. Burns 40, 947-956 https://doi.org/10.1016/j.burns.2013.11.022
  16. Cazander G, Jukema GN and Nibbering PH (2012) Complement activation and inhibition in wound healing. Clin Dev Immunol 2012, 534291
  17. Franceschi C, Bonafe M, Valensin S (2000) Inflammaging: An Evolutionary Perspective on Immunosenescence. Ann N Y Acad Sci 908, 244-254
  18. Franceschi C and Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69 Suppl 1, S4-9 https://doi.org/10.1093/gerona/glu057
  19. Franceschi C, Garagnani P, Parini P, Giuliani C and Santoro A (2018) Inflammaging: a new immunemetabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14, 576-590 https://doi.org/10.1038/s41574-018-0059-4
  20. Munn LL (2017) Cancer and inflammation. Wiley Interdiscip Rev Syst Biol Med 9, e1370 https://doi.org/10.1002/wsbm.1370
  21. Bellou V, Belbasis L, Tzoulaki I and Evangelou E (2018) Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses. PLoS One 13, e0194127 https://doi.org/10.1371/journal.pone.0194127
  22. Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG and Orekhov AN (2016) Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. Biomed Res Int 2016, 9582430
  23. Kietzmann T, Petry A, Shvetsova A, Gerhold JM and Gorlach A (2017) The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br J Pharmacol 174, 1533-1554 https://doi.org/10.1111/bph.13792
  24. Lee CK, Weindruch R and Prolla TA (2000) Geneexpression profile of the ageing brain in mice. Nat Genet 25, 294-297 https://doi.org/10.1038/77046
  25. Sandovici I, Hammerle CM, Cooper WN et al (2016) Ageing is associated with molecular signatures of inflammation and type 2 diabetes in rat pancreatic islets. Diabetologia 59, 502-511 https://doi.org/10.1007/s00125-015-3837-8
  26. Yang J, Huang T, Petralia F et al (2015) Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases. Sci Rep 5, 15145 https://doi.org/10.1038/srep15145
  27. Harris RA, Tindale L and Cumming RC (2014) Age-dependent metabolic dysregulation in cancer and Alzheimer's disease. Biogerontology 15, 559-577 https://doi.org/10.1007/s10522-014-9534-z
  28. Rodwell GE, Sonu R, Zahn JM et al (2004) A transcriptional profile of aging in the human kidney. PLoS Biol 2, e427 https://doi.org/10.1371/journal.pbio.0020427
  29. Kim IH, Xu J, Liu X et al (2016) Aging increases the susceptibility of hepatic inflammation, liver fibrosis and aging in response to high-fat diet in mice. Age (Dordr) 38, 291-302 https://doi.org/10.1007/s11357-016-9938-6
  30. Maquart FX and Monboisse JC (2014) Extracellular matrix and wound healing. Pathol Biol (Paris) 62, 91-95 https://doi.org/10.1016/j.patbio.2014.02.007
  31. Enomoto H, Bando Y, Nakamura H, Nishiguchi S and Koga M (2015) Liver fibrosis markers of nonalcoholic steatohepatitis. World J Gastroenterol 21, 7427-7435 https://doi.org/10.3748/wjg.v21.i24.7427
  32. Kim JW, Ko SH, Cho JH et al (2008) Loss of beta-cells with fibrotic islet destruction in type 2 diabetes mellitus. Front Biosci 13, 6022-6033
  33. Pibiri M, Sulas P, Leoni VP et al (2015) Global gene expression profile of normal and regenerating liver in young and old mice. Age (Dordr) 37, 9796
  34. Lu L, Zhu C, Xia B and Yi C (2014) Oxidative demethylation of DNA and RNA mediated by non-heme iron-dependent dioxygenases. Chem Asian J 9, 2018-2029 https://doi.org/10.1002/asia.201402148
  35. Chandra R and Liddle RA (2013) Modulation of pancreatic exocrine and endocrine secretion. Curr Opin Gastroenterol 29, 517-522 https://doi.org/10.1097/MOG.0b013e3283639326
  36. Riera CE, Huising MO, Follett P et al (2014) TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling. Cell 157, 1023-1036 https://doi.org/10.1016/j.cell.2014.03.051
  37. Ermolaeva M, Neri F, Ori A and Rudolph KL (2018) Cellular and epigenetic drivers of stem cell ageing. Nat Rev Mol Cell Biol 19, 594-610 https://doi.org/10.1038/s41580-018-0020-3
  38. Leeman DS, Hebestreit K, Ruetz T et al (2018) Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science 359, 1277-1283 https://doi.org/10.1126/science.aag3048
  39. Lupo G, Nisi PS, Esteve P et al (2018) Molecular profiling of aged neural progenitors identifies Dbx2 as a candidate regulator of age-associated neurogenic decline. Aging Cell 17, e12745 https://doi.org/10.1111/acel.12745
  40. Liu L, Cheung TH, Charville GW et al (2013) Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep 4, 189-204 https://doi.org/10.1016/j.celrep.2013.05.043
  41. Price FD, von Maltzahn J, Bentzinger CF et al (2014) Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat Med 20, 1174-1181 https://doi.org/10.1038/nm.3655
  42. Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA and Goodell MA (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5, e201 https://doi.org/10.1371/journal.pbio.0050201
  43. Sun D, Luo M, Jeong M et al (2014) Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673-688 https://doi.org/10.1016/j.stem.2014.03.002
  44. Kowalczyk MS, Tirosh I, Heckl D et al (2015) Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res 25, 1860-1872 https://doi.org/10.1101/gr.192237.115
  45. Kizil C, Kyritsis N and Brand M (2015) Effects of inflammation on stem cells: together they strive? EMBO Rep 16, 416-426 https://doi.org/10.15252/embr.201439702
  46. Newman AM, Liu CL, Green MR et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12, 453-457 https://doi.org/10.1038/nmeth.3337
  47. Macosko EZ, Basu A, Satija R et al (2015) Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 161, 1202-1214 https://doi.org/10.1016/j.cell.2015.05.002
  48. Deng Q, Ramskold D, Reinius B and Sandberg R (2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193-196 https://doi.org/10.1126/science.1245316
  49. Arda HE, Li L, Tsai J et al (2016) Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human beta Cell Function. Cell Metab 23, 909-920 https://doi.org/10.1016/j.cmet.2016.04.002
  50. Enge M, Arda HE, Mignardi M et al (2017) Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns. Cell 171, 321-330 e314 https://doi.org/10.1016/j.cell.2017.09.004
  51. Islam S, Zeisel A, Joost S et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11, 163-166 https://doi.org/10.1038/nmeth.2772
  52. Wang T, Tsui B, Kreisberg JF et al (2017) Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol 18, 57 https://doi.org/10.1186/s13059-017-1186-2
  53. Cole JJ, Robertson NA, Rather MI et al (2017) Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol 18, 58 https://doi.org/10.1186/s13059-017-1185-3
  54. Koubova J and Guarente L (2003) How does calorie restriciton work? Genes Dev 17, 313-321 https://doi.org/10.1101/gad.1052903
  55. Fontana L and Partridge L (2015) Promoting health and longevity through diet: from model organisms to humans. Cell 161, 106-118 https://doi.org/10.1016/j.cell.2015.02.020
  56. Katewa SD and Kapahi P (2010) Dietary restriction and aging, 2009. Aging Cell 9, 105-112 https://doi.org/10.1111/j.1474-9726.2010.00552.x
  57. Li Y, Daniel M and Tollefsbol TO (2011) Epigenetic regulation of caloric restriction in aging. BMC Med 9, 98 https://doi.org/10.1186/1741-7015-9-98
  58. Solon-Biet SM, McMahon AC, Ballard JW et al (2014) The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab 19, 418-430 https://doi.org/10.1016/j.cmet.2014.02.009
  59. Grandison RC, Piper MD and Partridge L (2009) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462, 1061-1064 https://doi.org/10.1038/nature08619
  60. Ables GP, Brown-Borg HM, Buffenstein R et al (2014) The first international mini-symposium on methionine restriction and lifespan. Front Genet 5, 122
  61. Nakagawa S, Lagisz M, Hector KL and Spencer HG (2012) Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell 11, 401-409 https://doi.org/10.1111/j.1474-9726.2012.00798.x
  62. Pamplona R and Barja G (2006) Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta 1757, 496-508 https://doi.org/10.1016/j.bbabio.2006.01.009
  63. Miller RA, Buehner G, Chang Y, Harper JM, Sigler R and Smith-Wheelock M (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging cell 4, 119-125 https://doi.org/10.1111/j.1474-9726.2005.00152.x
  64. Richardson BC (2002) Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J Nutr 132, 2401S-2405S https://doi.org/10.1093/jn/132.8.2401S
  65. Bartke A and Brown-Borg H (2004) Life extension in the dwarf mouse. Curr Top Dev Biol 63, 189-225
  66. Armstrong VL, Rakoczy S, Rojanathammanee L and Brown-Borg HM (2014) Expression of DNA methyltransferases is influenced by growth hormone in the long-living Ames dwarf mouse in vivo and in vitro. J Gerontol A Biol Sci Med Sci 69, 923-933 https://doi.org/10.1093/gerona/glt133
  67. Victoria B, Dhahbi JM, Nunez Lopez YO et al (2015) Circulating microRNA signature of genotype-by-age interactions in the long-lived Ames dwarf mouse. Aging Cell 14, 1055-1066 https://doi.org/10.1111/acel.12373
  68. Bates DJ, Li N, Liang R et al (2010) MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging. Aging Cell 9, 1-18 https://doi.org/10.1111/j.1474-9726.2009.00529.x
  69. Aliper A, Jellen L, Cortese F et al (2017) Towards natural mimetics of metformin and rapamycin. Aging (Albany NY) 9, 2245-2268
  70. Roth GS and Ingram DK (2016) Manipulation of health span and function by dietary caloric restriction mimetics. Ann N Y Acad Sci 1363, 5-10 https://doi.org/10.1111/nyas.12834
  71. Hall MN (2008) mTOR-what does it do? Transplant Proc 40, S5-8 https://doi.org/10.1016/j.transproceed.2008.10.009
  72. Wilkinson JE, Burmeister L, Brooks SV et al (2012) Rapamycin slows aging in mice. Aging cell 11, 675-682 https://doi.org/10.1111/j.1474-9726.2012.00832.x
  73. El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M and Leverve X (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275, 223-228 https://doi.org/10.1074/jbc.275.1.223
  74. Leff T (2003) AMP-activated protein kinase regulates gene expression by direct phosphorylation of nuclear proteins. Biochem Soc Trans 31, 224-227 https://doi.org/10.1042/bst0310224
  75. Vinuela A, Snoek LB, Riksen JA and Kammenga JE (2010) Genome-wide gene expression regulation as a function of genotype and age in C. elegans. Genome Res 20, 929-937 https://doi.org/10.1101/gr.102160.109
  76. Southworth LK, Owen AB and Kim SK (2009) Aging mice show a decreasing correlation of gene expression within genetic modules. PLoS Genet 5, e1000776 https://doi.org/10.1371/journal.pgen.1000776
  77. Wang ET, Sandberg R, Luo S et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470-476 https://doi.org/10.1038/nature07509
  78. Bahar R, Hartmann CH, Rodriguez KA et al (2006) Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441, 1011-1014 https://doi.org/10.1038/nature04844
  79. Warren LA, Rossi DJ, Schiebinger GR, Weissman IL, Kim SK and Quake SR (2007) Transcriptional instability is not a universal attribute of aging. Aging cell 6, 775-782 https://doi.org/10.1111/j.1474-9726.2007.00337.x
  80. Martinez-Jimenez CP, Eling N, Chen HC et al (2017) Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science 355, 1433-1436
  81. Dvinge H (2018) Regulation of alternative mRNA splicing: old players and new perspectives. FEBS Lett 592, 2987-3006 https://doi.org/10.1002/1873-3468.13119
  82. Pan Q, Shai O, Lee LJ, Frey BJ and Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40, 1413-1415 https://doi.org/10.1038/ng.259
  83. Deschenes M and Chabot B (2017) The emerging role of alternative splicing in senescence and aging. Aging Cell 16, 918-933 https://doi.org/10.1111/acel.12646
  84. Raj T, Li YI, Wong G et al (2018) Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer's disease susceptibility. Nat Genet 50, 1584-1592 https://doi.org/10.1038/s41588-018-0238-1
  85. Harries LW, Hernandez D, Henley W et al (2011) Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell 10, 868-878 https://doi.org/10.1111/j.1474-9726.2011.00726.x
  86. Stilling RM, Benito E, Gertig M et al (2014) Deregulation of gene expression and alternative splicing affects distinct cellular pathways in the aging hippocampus. Front Cell Neurosci 8, 373
  87. Tollervey JR, Wang Z, Hortobagyi T et al (2011) Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Res 21, 1572-1582 https://doi.org/10.1101/gr.122226.111
  88. Mazin P, Xiong J, Liu X, Yan Z et al (2013) Widespread splicing changes in human brain development and aging. Mol Syst Biol 9, 633 https://doi.org/10.1038/msb.2012.67
  89. Rhoads TW, Burhans MS, Chen VB et al (2018) Caloric Restriction Engages Hepatic RNA Processing Mechanisms in Rhesus Monkeys. Cell Metab 27, 677-688.e675 https://doi.org/10.1016/j.cmet.2018.01.014
  90. Lee BP, Pilling LC, Emond F et al (2016) Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans. Aging Cell 15, 903-913 https://doi.org/10.1111/acel.12499
  91. Heintz C, Doktor TK, Lanjuin A et al (2017) Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans. Nature 541, 102-106 https://doi.org/10.1038/nature20789
  92. Goff LA and Rinn JL (2015) Linking RNA biology to lncRNAs. Genome Res 25, 1456-1465 https://doi.org/10.1101/gr.191122.115
  93. Ruiz-Orera J, Messeguer X, Subirana JA and Alba MM (2014) Long non-coding RNAs as a source of new peptides. Elife 3, e03523 https://doi.org/10.7554/eLife.03523
  94. Choi SW, Kim HW and Nam JW (2018) The small peptide world in long noncoding RNAs. Brief Bioinform, bby055-bby055
  95. Smith-Vikos T and Slack FJ (2012) MicroRNAs and their roles in aging. J Cell Sci 125, 7-17 https://doi.org/10.1242/jcs.099200
  96. Hofmann P, Sommer J, Theodorou K et al (2018) Long non-coding RNA H19 regulates endothelial cell aging via inhibition of Stat3 signaling. Cardiovasc Res 115, 230-242
  97. Venkatraman A, He XC, Thorvaldsen JL et al (2013) Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 500, 345-349 https://doi.org/10.1038/nature12303
  98. Yo K and Runger TM (2018) The long non-coding RNA FLJ46906 binds to the transcription factors NF-kappaB and AP-1 and regulates expression of aging-associated genes. Aging (Albany NY) 10, 2037-2050
  99. Sanger HL, Klotz G, Riesner D, Gross HJ and Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A 73, 3852-3856 https://doi.org/10.1073/pnas.73.11.3852
  100. Hsu MT and Coca-Prados M (1979) Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280, 339-340 https://doi.org/10.1038/280339a0
  101. Salzman J, Gawad C, Wang PL, Lacayo N and Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7, e30733 https://doi.org/10.1371/journal.pone.0030733
  102. Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141-157 https://doi.org/10.1261/rna.035667.112
  103. Salzman J, Chen RE, Olsen MN, Wang PL and Brown PO (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9, e1003777 https://doi.org/10.1371/journal.pgen.1003777
  104. Westholm JO, Miura P, Olson S et al (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9, 1966-1980 https://doi.org/10.1016/j.celrep.2014.10.062
  105. Cortes-Lopez M, Gruner MR, Cooper DA et al (2018) Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics 19, 8 https://doi.org/10.1186/s12864-017-4386-y
  106. Lu C, Sun X, Li N et al (2018) CircRNAs in the tree shrew (Tupaia belangeri) brain during postnatal development and aging. Aging (Albany NY) 10, 833-852
  107. Nigro JM, Cho KR, Fearon ER et al (1991) Scrambled exons. Cell 64, 607-613 https://doi.org/10.1016/0092-8674(91)90244-S
  108. Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495, 384-388 https://doi.org/10.1038/nature11993
  109. Hansen TB, Wiklund ED, Bramsen JB et al (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30, 4414-4422 https://doi.org/10.1038/emboj.2011.359
  110. Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56, 55-66 https://doi.org/10.1016/j.molcel.2014.08.019
  111. Chen CY and Sarnow P (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268, 415-417 https://doi.org/10.1126/science.7536344
  112. Wang Y and Wang Z (2015) Efficient backsplicing produces translatable circular mRNAs. RNA 21, 172-179 https://doi.org/10.1261/rna.048272.114
  113. Legnini I, Di Timoteo G, Rossi F et al (2017) Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Mol Cell 66, 22-37 e29 https://doi.org/10.1016/j.molcel.2017.02.017
  114. Rybak-Wolf A, Stottmeister C, Glazar P et al (2015) Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol Cell 58, 870-885 https://doi.org/10.1016/j.molcel.2015.03.027
  115. Gruner H, Cortes-Lopez M, Cooper DA, Bauer M and Miura P (2016) CircRNA accumulation in the aging mouse brain. Sci Rep 6, 38907 https://doi.org/10.1038/srep38907
  116. Chen K, Hu Z, Xia Z, Zhao D, Li W and Tyler JK (2015) The Overlooked Fact: Fundamental Need for Spike-In Control for Virtually All Genome-Wide Analyses. Mol Cell Biol 36, 662-667
  117. Panda AC, Grammatikakis I, Kim KM et al (2017) Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res 45, 4021-4035 https://doi.org/10.1093/nar/gkw1201
  118. Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92, 9363-9367 https://doi.org/10.1073/pnas.92.20.9363
  119. Baker DJ, Wijshake T, Tchkonia T et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageingassociated disorders. Nature 479, 232-236 https://doi.org/10.1038/nature10600
  120. Piwecka M, Glazar P, Hernandez-Miranda LR et al (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526 https://doi.org/10.1126/science.aam8526
  121. Vijg J and Suh Y (2013) Genome instability and aging. Annu Rev Physiol 75, 645-668 https://doi.org/10.1146/annurev-physiol-030212-183715
  122. McClintock B (1953) Induction of Instability at Selected Loci in Maize. Genetics 38, 579-599
  123. Biemont C and Vieira C (2006) Junk DNA as an evolutionary force. Nature 443, 521 https://doi.org/10.1038/443521a
  124. Sotero-Caio CG, Platt RN 2nd, Suh A and Ray DA (2017) Evolution and Diversity of Transposable Elements in Vertebrate Genomes. Genome Biol Evol 9, 161-177 https://doi.org/10.1093/gbe/evw264
  125. Levin HL and Moran JV (2011) Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 12, 615-627 https://doi.org/10.1038/nrg3030
  126. Rebollo R, Romanish MT and Mager DL (2012) Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 46, 21-42 https://doi.org/10.1146/annurev-genet-110711-155621
  127. Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115, 49-63 https://doi.org/10.1023/A:1016072014259
  128. Kidwell MG and Lisch D (1997) Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci U S A 94, 7704-7711 https://doi.org/10.1073/pnas.94.15.7704
  129. Treangen TJ and Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13, 36-46
  130. Bao W, Kojima KK and Kohany O (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA 6, 11 https://doi.org/10.1186/s13100-015-0041-9
  131. Rhoads A and Au KF (2015) PacBio Sequencing and Its Applications. Genomics Proteomics Bioinformatics 13, 278-289 https://doi.org/10.1016/j.gpb.2015.08.002
  132. Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC and McCombie WR (2015) Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res 25, 1750-1756 https://doi.org/10.1101/gr.191395.115
  133. Bao J, Chen M, Zhong Z et al (2017) PacBio Sequencing Reveals Transposable Elements as a Key Contributor to Genomic Plasticity and Virulence Variation in Magnaporthe oryzae. Mol Plant 10, 1465-1468 https://doi.org/10.1016/j.molp.2017.08.008
  134. Debladis E, Llauro C, Carpentier MC, Mirouze M and Panaud O (2017) Detection of active transposable elements in Arabidopsis thaliana using Oxford Nanopore Sequencing technology. BMC Genomics 18, 537 https://doi.org/10.1186/s12864-017-3753-z
  135. Kim Y, Nam HG and Valenzano DR (2016) The short-lived African turquoise killifish: an emerging experimental model for ageing. Dis Model Mech 9, 115-129 https://doi.org/10.1242/dmm.023226
  136. Bessereau JL (2006) Transposons in C. elegans, WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.70.1, http://www.wormbook.org.
  137. Quesneville H, Bergman CM, Andrieu O et al (2005) Combined evidence annotation of transposable elements in genome sequences. PLoS Comput Biol 1, 166-175
  138. Loreto ELS and Pereira CM (2017) Somatizing the transposons action. Mobile Genetic Elements 7, 1-9
  139. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409, 860-921 https://doi.org/10.1038/35057062
  140. Lu S, Niu Z, Chen Y et al (2018) Repetitive Element DNA Methylation is Associated with Menopausal Age. Aging Dis 9, 435-443 https://doi.org/10.14336/AD.2017.0810
  141. Yu Q, Carbone CJ, Katlinskaya YV et al (2015) Type I Interferon Controls Propagation of Long Interspersed Element-1. J Biol Chem 290, 10191-10199 https://doi.org/10.1074/jbc.M114.612374
  142. Valenzano DR, Benayoun BA, Singh PP et al (2015) The African Turquoise Killifish Genome Provides Insights into Evolution and Genetic Architecture of Lifespan. Cell 163, 1539-1554 https://doi.org/10.1016/j.cell.2015.11.008
  143. Harel I, Benayoun BA, Machado B et al (2015) A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate. Cell 160, 1013-1026 https://doi.org/10.1016/j.cell.2015.01.038
  144. Reichenbacher B and Reichard M (2014) Otoliths of five extant species of the annual killifish Nothobranchius from the East African savannah. PLoS One 9, e112459 https://doi.org/10.1371/journal.pone.0112459
  145. Valdesalici S and Cellerino A (2003) Extremely short lifespan in the annual fish Nothobranchius furzeri. Proc Biol Sci 270 Suppl 2, S189-191 https://doi.org/10.1098/rspb.2002.2233
  146. Kirschner J, Weber D, Neuschl C et al (2012) Mapping of quantitative trait loci controlling lifespan in the short-lived fish Nothobranchius furzeri--a new vertebrate model for age research. Aging Cell 11, 252-261 https://doi.org/10.1111/j.1474-9726.2011.00780.x
  147. Valenzano DR, Kirschner J, Kamber RA et al (2009) Mapping loci associated with tail color and sex determination in the short-lived fish Nothobranchius furzeri. Genetics 183, 1385-1395 https://doi.org/10.1534/genetics.109.108670
  148. Terzibasi E, Valenzano DR, Benedetti M et al (2008) Large differences in aging phenotype between strains of the short-lived annual fish Nothobranchius furzeri. PLoS One 3, e3866 https://doi.org/10.1371/journal.pone.0003866
  149. Reichwald K, Petzold A, Koch P et al (2015) Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived Fish. Cell 163, 1527-1538 https://doi.org/10.1016/j.cell.2015.10.071
  150. Di Cicco E, Tozzini ET, Rossi G and Cellerino A (2011) The short-lived annual fish Nothobranchius furzeri shows a typical teleost aging process reinforced by high incidence of age-dependent neoplasias. Exp Gerontol 46, 249-256 https://doi.org/10.1016/j.exger.2010.10.011
  151. Terzibasi E, Valenzano DR and Cellerino A (2007) The short-lived fish Nothobranchius furzeri as a new model system for aging studies. Exp Gerontol 42, 81-89 https://doi.org/10.1016/j.exger.2006.06.039
  152. Terzibasi E, Lefrancois C, Domenici P, Hartmann N, Graf M and Cellerino A (2009) Effects of dietary restriction on mortality and age-related phenotypes in the short-lived fish Nothobranchius furzeri. Aging cell 8, 88-99 https://doi.org/10.1111/j.1474-9726.2009.00455.x
  153. von Figura G, Wagner M, Nalapareddy K et al (2011) Regeneration of the exocrine pancreas is delayed in telomere-dysfunctional mice. PLoS One 6, e17122 https://doi.org/10.1371/journal.pone.0017122
  154. Reichwald K, Lauber C, Nanda I et al (2009) High tandem repeat content in the genome of the short-lived annual fish Nothobranchius furzeri: a new vertebrate model for aging research. Genome Biol 10, R16 https://doi.org/10.1186/gb-2009-10-2-r16
  155. Yang F and Wang PJ (2016) Multiple LINEs of retrotransposon silencing mechanisms in the mammalian germline. Semin Cell Dev Biol 59, 118-125 https://doi.org/10.1016/j.semcdb.2016.03.001
  156. Wood JG, Jones BC, Jiang N et al (2016) Chromatinmodifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila. Proc Natl Acad Sci U S A 113, 11277-11282 https://doi.org/10.1073/pnas.1604621113
  157. Dang W, Steffen KK, Perry R et al (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459, 802-807 https://doi.org/10.1038/nature08085
  158. Jiang N, Du G, Tobias E et al (2013) Dietary and genetic effects on age-related loss of gene silencing reveal epigenetic plasticity of chromatin repression during aging. Aging 5, 813-824 https://doi.org/10.18632/aging.100614
  159. Rosenberg MI and Parkhurst SM (2002) Drosophila Sir2 Is Required for Heterochromatic Silencing and by Euchromatic Hairy/E(Spl) bHLH Repressors in Segmentation and Sex Determination. Cell 109, 447-458 https://doi.org/10.1016/S0092-8674(02)00732-8
  160. Schotta G, Ebert A, Krauss V et al (2002) Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21, 1121-1131 https://doi.org/10.1093/emboj/21.5.1121
  161. De Cecco M, Criscione SW, Peterson AL, Neretti N, Sedivy JM and Kreiling JA (2013) Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (Albany NY) 5, 867-883
  162. Tsurumi A and Li WX (2012) Global heterochromatin loss: a unifying theory of aging? Epigenetics 7, 680-688 https://doi.org/10.4161/epi.20540
  163. Sturm A, Ivics Z and Vellai T (2015) The mechanism of ageing: primary role of transposable elements in genome disintegration. Cellular and Molecular Life Sciences 72, 1839-1847 https://doi.org/10.1007/s00018-015-1896-0
  164. Wood J and Helfand S (2013) Chromatin structure and transposable elements in organismal aging. Front Genet 4, Article 274
  165. Liu N, Lee CH, Swigut T et al (2017) Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. Nature 553, 228
  166. Stetson DB and Medzhitov R (2006) Type I Interferons in Host Defense. Immunity 25, 373-381 https://doi.org/10.1016/j.immuni.2006.08.007
  167. Cuellar TL, Herzner A-M, Zhang X et al (2017) Silencing of retrotransposons by SETDB1 inhibits the interferon response in acute myeloid leukemia. J Cell Biol 216, 3535-3549 https://doi.org/10.1083/jcb.201612160
  168. Tan MH, Li Q, Shanmugam R et al (2017) Dynamic landscape and regulation of RNA editing in mammals. Nature 550, 249-254 https://doi.org/10.1038/nature24041
  169. Li W, Prazak L, Chatterjee N et al (2013) Activation of transposable elements during aging and neuronal decline in Drosophila. Nat Neurosci 16, 529-531 https://doi.org/10.1038/nn.3368
  170. Ross RJ, Weiner MM and Lin H (2014) PIWI proteins and PIWI-interacting RNAs in the soma. Nature 505, 353-359 https://doi.org/10.1038/nature12987
  171. Perrat PN, DasGupta S, Wang J et al (2013) Transposition-Driven Genomic Heterogeneity in the Drosophila Brain. Science 340, 91-95 https://doi.org/10.1126/science.1231965
  172. Teixeira FK, Okuniewska M, Malone CD, Coux R-X, Rio DC and Lehmann R (2017) piRNA-mediated regulation of transposon alternative splicing in the soma and germ line. Nature 552, 268 https://doi.org/10.1038/nature25018
  173. Martinez G (2018) tRNA-derived small RNAs: New players in genome protection against retrotransposons. RNA Biol 15, 170-175 https://doi.org/10.1080/15476286.2017.1403000
  174. Green CD, Huang Y, Dou X, Yang L, Liu Y and Han J-D J (2017) Impact of Dietary Interventions on Noncoding RNA Networks and mRNAs Encoding Chromatin-Related Factors. Cell Rep 18, 2957-2968 https://doi.org/10.1016/j.celrep.2017.03.001
  175. Percharde M, Lin C-J, Yin Y et al (2018) A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity. Cell 174, 391-405.e319 https://doi.org/10.1016/j.cell.2018.05.043
  176. Doolittle WF and Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601-603 https://doi.org/10.1038/284601a0
  177. Dupressoir A, Lavialle C and Heidmann T (2012) From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33, 663-671 https://doi.org/10.1016/j.placenta.2012.05.005
  178. Kassiotis G and Stoye JP (2016) Immune responses to endogenous retroelements: taking the bad with the good. Nature reviews. Immunology 16, 207-219 https://doi.org/10.1038/nri.2016.27
  179. Hurst TP and Magiorkinis G (2015) Activation of the innate immune response by endogenous retroviruses. J Gen Virol 96, 1207-1218 https://doi.org/10.1099/vir.0.000017
  180. Guo C, Jeong HH, Hsieh YC et al (2018) Tau Activates Transposable Elements in Alzheimer's Disease. Cell Rep 23, 2874-2880 https://doi.org/10.1016/j.celrep.2018.05.004
  181. Mackenzie IR and Rademakers R (2008) The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol 21, 693-700 https://doi.org/10.1097/WCO.0b013e3283168d1d
  182. Li W, Jin Y, Prazak L, Hammell M and Dubnau J (2012) Transposable elements in TDP-43-mediated neurodegenerative disorders. PLoS One 7, e44099 https://doi.org/10.1371/journal.pone.0044099
  183. Krug L, Chatterjee N, Borges-Monroy R et al (2017) Retrotransposon activation contributes to neurodegeneration in a Drosophila TDP-43 model of ALS. PLoS Genet 13, e1006635 https://doi.org/10.1371/journal.pgen.1006635
  184. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 https://doi.org/10.1016/S0092-8674(04)00045-5
  185. Friedman RC, Farh KK, Burge CB and Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19, 92-105
  186. de Lencastre A, Pincus Z, Zhou K, Kato M, Lee SS and Slack FJ (2010) MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol 20, 2159-2168 https://doi.org/10.1016/j.cub.2010.11.015
  187. Pincus Z, Smith-Vikos T and Slack FJ (2011) MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS Genet 7, e1002306 https://doi.org/10.1371/journal.pgen.1002306
  188. Maes OC, An J, Sarojini H and Wang E (2008) Murine microRNAs implicated in liver functions and aging process. Mech Ageing Dev 129, 534-541 https://doi.org/10.1016/j.mad.2008.05.004
  189. Mimura S, Iwama H, Kato K et al (2014) Profile of microRNAs associated with aging in rat liver. Int J Mol Med 34, 1065-1072 https://doi.org/10.3892/ijmm.2014.1892
  190. Kim JH, Lee BR, Choi ES et al (2017) Reverse Expression of Aging-Associated Molecules through Transfection of miRNAs to Aged Mice. Mol Ther Nucleic Acids 6, 106-115 https://doi.org/10.1016/j.omtn.2016.11.005
  191. Fenn AM, Smith KM, Lovett-Racke AE, Guerau-de-Arellano M, Whitacre CC and Godbout JP (2013) Increased micro-RNA 29b in the aged brain correlates with the reduction of insulin-like growth factor-1 and fractalkine ligand. Neurobiol Aging 34, 2748-2758 https://doi.org/10.1016/j.neurobiolaging.2013.06.007
  192. Nolan K, Mitchem MR, Jimenez-Mateos EM, Henshall DC, Concannon CG and Prehn JH (2014) Increased expression of microRNA-29a in ALS mice: functional analysis of its inhibition. J Mol Neurosci 53, 231-241 https://doi.org/10.1007/s12031-014-0290-y
  193. Somel M, Guo S, Fu N et al (2010) MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res 20, 1207-1218 https://doi.org/10.1101/gr.106849.110
  194. Takahashi M, Eda A, Fukushima T and Hohjoh H (2012) Reduction of type IV collagen by upregulated miR-29 in normal elderly mouse and klotho-deficient, senescencemodel mouse. PLoS One 7, e48974 https://doi.org/10.1371/journal.pone.0048974
  195. Ugalde AP, Ramsay AJ, de la Rosa J et al (2011) Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53. EMBO J 30, 2219-2232 https://doi.org/10.1038/emboj.2011.124
  196. Ripa R, Dolfi L, Terrigno M et al (2017) MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging. BMC Biol 15, 9 https://doi.org/10.1186/s12915-017-0354-x
  197. Terzibasi Tozzini E, Savino A, Ripa R, Battistoni G, Baumgart M and Cellerino A (2014) Regulation of microRNA expression in the neuronal stem cell niches during aging of the short-lived annual fish Nothobranchius furzeri. Front Cell Neurosci 8, 51
  198. Heid J, Cencioni C, Ripa R et al (2017) Age-dependent increase of oxidative stress regulates microRNA-29 family preserving cardiac health. Sci Rep 7, 16839 https://doi.org/10.1038/s41598-017-16829-w
  199. Boehm M and Slack F (2005) A developmental timing microRNA and its target regulate life span in C. elegans. Science 310, 1954-1957 https://doi.org/10.1126/science.1115596
  200. Ha M and Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15, 509-524 https://doi.org/10.1038/nrm3838
  201. Reis FC, Branquinho JL, Brandao BB et al (2016) Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice. Aging (Albany NY) 8, 1201-1222
  202. Takeda T and Tanabe H (2016) Lifespan and reproduction in brain-specific miR-29-knockdown mouse. Biochem Biophys Res Commun 471, 454-458 https://doi.org/10.1016/j.bbrc.2016.02.055
  203. Lyu G, Guan Y, Zhang C et al (2018) TGF-${\beta}$ signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging. Nat Communs 9, 2560 https://doi.org/10.1038/s41467-018-04994-z
  204. Alvager T, Graham G, Hilleke R, Hutchison D and Westgard J (1989) On the information content of the genetic code. Biosystems 22, 189-196 https://doi.org/10.1016/0303-2647(89)90060-9
  205. Elf J, Nilsson D, Tenson T and Ehrenberg M (2003) Selective charging of tRNA isoacceptors explains patterns of codon usage. Science 300, 1718-1722 https://doi.org/10.1126/science.1083811
  206. Kimchi-Sarfaty C, Oh JM, Kim IW et al (2007) A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525-528 https://doi.org/10.1126/science.1135308
  207. Zhao F, Yu CH and Liu Y (2017) Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells. Nucleic Acids Res 45, 8484-8492 https://doi.org/10.1093/nar/gkx501
  208. Cohen E, Zafrir Z and Tuller T (2018) A code for transcription elongation speed. RNA Biol 15, 81-94 https://doi.org/10.1080/15476286.2017.1384118
  209. Plotkin JB and Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12, 32-42 https://doi.org/10.1038/nrg2899
  210. Drummond DA and Wilke CO (2008) Mistranslationinduced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134, 341-352 https://doi.org/10.1016/j.cell.2008.05.042
  211. Schieweck R, Popper B and Kiebler MA (2016) Co-Translational Folding: A Novel Modulator of Local Protein Expression in Mammalian Neurons? Trends Genet 32, 788-800 https://doi.org/10.1016/j.tig.2016.10.004
  212. Gao FB, Richter JD and Cleveland DW (2017) Rethinking Unconventional Translation in Neurodegeneration. Cell 171, 994-1000 https://doi.org/10.1016/j.cell.2017.10.042
  213. Goffena J, Lefcort F, Zhang Y et al (2018) Elongator and codon bias regulate protein levels in mammalian peripheral neurons. Nat Commun 9, 889 https://doi.org/10.1038/s41467-018-03221-z
  214. Strehler B, Hirsch G, Gusseck D, Johnson R and Bick M (1971) Codon-restriction theory by aging and development. J Theor Biol 33, 429-474 https://doi.org/10.1016/0022-5193(71)90091-9
  215. Dittmar KA, Goodenbour JM and Pan T (2006) Tissue-specific differences in human transfer RNA expression. PLoS Genet 2, e221 https://doi.org/10.1371/journal.pgen.0020221
  216. Sagi D, Rak R, Gingold H et al (2016) Tissue- and Time-Specific Expression of Otherwise Identical tRNA Genes. PLoS Genet 12, e1006264 https://doi.org/10.1371/journal.pgen.1006264
  217. Gingold H, Tehler D, Christoffersen NR et al (2014) A dual program for translation regulation in cellular proliferation and differentiation. Cell 158, 1281-1292 https://doi.org/10.1016/j.cell.2014.08.011
  218. Kwon NH, Lee MR, Kong J et al (2017) Transfer-RNAmediated enhancement of ribosomal proteins S6 kinases signaling for cell proliferation. RNA Biol, 1-14
  219. Kumar P, Kuscu C and Dutta A (2016) Biogenesis and Function of Transfer RNA-Related Fragments (tRFs). Trends Biochem Sci 41, 679-689 https://doi.org/10.1016/j.tibs.2016.05.004
  220. Kim HK, Fuchs G, Wang S et al (2017) A transfer-RNAderived small RNA regulates ribosome biogenesis. Nature 552, 57-62 https://doi.org/10.1038/nature25005
  221. Arimbasseri AG and Maraia RJ (2016) RNA Polymerase III Advances: Structural and tRNA Functional Views. Trends Biochem Sci 41, 546-559 https://doi.org/10.1016/j.tibs.2016.03.003
  222. Park JL, Lee YS, Kunkeaw N, Kim SY, Kim IH and Lee YS (2017) Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III. Epigenomics 9, 171-187 https://doi.org/10.2217/epi-2016-0108
  223. Oler AJ, Alla RK, Roberts DN et al (2010) Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nat Struct Mol Biol 17, 620-628 https://doi.org/10.1038/nsmb.1801
  224. Filer D, Thompson MA, Takhaveev V et al (2017) RNA polymerase III limits longevity downstream of TORC1. Nature 552, 263-267 https://doi.org/10.1038/nature25007
  225. Fischer KE, Hoffman JM, Sloane LB et al (2016) A cross-sectional study of male and female C57BL/6Nia mice suggests lifespan and healthspan are not necessarily correlated. Aging (Albany NY) 8, 2370-2391
  226. Dulken B and Brunet A (2015) Stem Cell Aging and Sex: Are We Missing Something? Cell Stem Cell 16, 588-590 https://doi.org/10.1016/j.stem.2015.05.006
  227. Harrison DE, Strong R, Allison DB et al (2014) Acarbose, 17-alpha-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 13, 273-282 https://doi.org/10.1111/acel.12170
  228. Berchtold NC, Cribbs DH, Coleman PD et al (2008) Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci U S A 105, 15605-15610 https://doi.org/10.1073/pnas.0806883105
  229. Zhang JZ, Gao W, Yang HB, Zhang B, Zhu ZY and Xue YF (2006) Screening for genes essential for mouse embryonic stem cell self-renewal using a subtractive RNA interference library. Stem Cells 24, 2661-2668 https://doi.org/10.1634/stemcells.2006-0017
  230. Isensee J, Witt H, Pregla R, Hetzer R, Regitz-Zagrosek V and Noppinger PR (2008) Sexually dimorphic gene expression in the heart of mice and men. J Mol Med (Berl) 86, 61-74 https://doi.org/10.1007/s00109-007-0240-z
  231. Qureshi IA and Mehler MF (2010) Genetic and epigenetic underpinnings of sex differences in the brain and in neurological and psychiatric disease susceptibility. Prog Brain Res 186, 77-95
  232. Yang X, Schadt EE, Wang S et al (2006) Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 16, 995-1004 https://doi.org/10.1101/gr.5217506
  233. Mayne BT, Bianco-Miotto T, Buckberry S et al (2016) Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans. Front Genet 7, 183
  234. Labonte B, Engmann O, Purushothaman I et al (2017) Sex-specific transcriptional signatures in human depression. Nat Med 23, 1102-1111 https://doi.org/10.1038/nm.4386
  235. Pomatto LC, Carney C, Shen B et al (2017) The Mitochondrial Lon Protease Is Required for Age-Specific and Sex-Specific Adaptation to Oxidative Stress. Curr Biol 27, 1-15 https://doi.org/10.1016/j.cub.2016.10.044
  236. Estep PW, 3rd Warner JB and Bulyk ML (2009) Short-term calorie restriction in male mice feminizes gene expression and alters key regulators of conserved aging regulatory pathways. PLoS One 4, e5242 https://doi.org/10.1371/journal.pone.0005242
  237. Maier T, Guell M and Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583, 3966-3973 https://doi.org/10.1016/j.febslet.2009.10.036
  238. Ori A, Toyama BH, Harris MS et al (2015) Integrated Transcriptome and Proteome Analyses Reveal Organ-Specific Proteome Deterioration in Old Rats. Cell Syst 1, 224-237 https://doi.org/10.1016/j.cels.2015.08.012
  239. Martins R, Lithgow GJ and Link W (2016) Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 15, 196-207 https://doi.org/10.1111/acel.12427
  240. Silva-Palacios A, Ostolga-Chavarria M, Zazueta C and Konigsberg M (2018) Nrf2: Molecular and epigenetic regulation during aging. Ageing Res Rev 47, 31-40 https://doi.org/10.1016/j.arr.2018.06.003
  241. Lee JS, Ward WO, Ren H et al (2012) Meta-analysis of gene expression in the mouse liver reveals biomarkers associated with inflammation increased early during aging. Mech Ageing Dev 133, 467-478 https://doi.org/10.1016/j.mad.2012.05.006
  242. Bochkis IM, Przybylski D, Chen J and Regev A (2014) Changes in nucleosome occupancy associated with metabolic alterations in aged mammalian liver. Cell Rep 9, 996-1006 https://doi.org/10.1016/j.celrep.2014.09.048
  243. White RR, Milholland B, MacRae SL, Lin M, Zheng D and Vijg J (2015) Comprehensive transcriptional landscape of aging mouse liver. BMC Genomics 16, 899 https://doi.org/10.1186/s12864-015-2061-8
  244. Baumgart M, Priebe S, Groth M et al (2016) Longitudinal RNA-Seq Analysis of Vertebrate Aging Identifies Mitochondrial Complex I as a Small-Molecule-Sensitive Modifier of Lifespan. Cell Syst 2, 122-132 https://doi.org/10.1016/j.cels.2016.01.014
  245. Bartling B, Niemann K, Pliquett RU, Treede H and Simm A (2018) Altered gene expression pattern indicates the differential regulation of the immune response system as an important factor in cardiac aging. Exp Gerontol [Epub ahead of print]
  246. Avrahami D, Li C, Zhang J et al (2015) Aging-Dependent Demethylation of Regulatory Elements Correlates with Chromatin State and Improved beta Cell Function. Cell Metab 22, 619-632 https://doi.org/10.1016/j.cmet.2015.07.025
  247. Xin Y, Okamoto H, Kim J et al (2016) Single-Cell RNAseq Reveals That Pancreatic beta-Cells From Very Old Male Mice Have a Young Gene Signature. Endocrinology 157, 3431-3438 https://doi.org/10.1210/en.2016-1235
  248. Baumgart M, Groth M, Priebe S et al (2014) RNA-seq of the aging brain in the short-lived fish N. furzeri - conserved pathways and novel genes associated with neurogenesis. Aging Cell 13, 965-974 https://doi.org/10.1111/acel.12257
  249. Liu L, Cheung TH, Charville GW et al (2013) Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell reports 4, 189-204 https://doi.org/10.1016/j.celrep.2013.05.043
  250. Sun D, Luo M, Jeong M et al (2014) Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell stem cell 14, 673-688 https://doi.org/10.1016/j.stem.2014.03.002
  251. Kawakami K, Nakamura A and Goto S (2012) Dietary restriction increases site-specific histone H3 acetylation in rat liver: possible modulation by sirtuins. Biochem Biophys Res Commun 418, 836-840 https://doi.org/10.1016/j.bbrc.2012.01.120
  252. Gokarn R, Solon-Biet SM, Cogger VC et al (2018) Long-term Dietary Macronutrients and Hepatic Gene Expression in Aging Mice. J Gerontol A Biol Sci Med Sci 73, 1618-1625
  253. Zullo A, Simone E, Grimaldi M et al (2018) Effect of nutrient deprivation on the expression and the epigenetic signature of sirtuin genes. Nutr Metab Cardiovasc Dis 28, 418-424 https://doi.org/10.1016/j.numecd.2018.02.004
  254. Hadad N, Unnikrishnan A, Jackson JA et al (2018) Caloric restriction mitigates age-associated hippocampal differential CG and non-CG methylation. Neurobiol Aging 67, 53-66 https://doi.org/10.1016/j.neurobiolaging.2018.03.009
  255. Schafer MJ, Dolgalev I, Alldred MJ, Heguy A and Ginsberg SD (2015) Calorie Restriction Suppresses Age-Dependent Hippocampal Transcriptional Signatures. PLoS One 10, e0133923 https://doi.org/10.1371/journal.pone.0133923
  256. Gong H, Qian H, Ertl R et al (2015) Histone modifications change with age, dietary restriction and rapamycin treatment in mouse brain. Oncotarget 6, 15882-15890 https://doi.org/10.18632/oncotarget.4137
  257. Swindell WR, List EO, Berryman DE and Kopchick JJ (2018) Transcriptional profiling identifies strain-specific effects of caloric restriction and opposite responses in human and mouse white adipose tissue. Aging (Albany NY) 10, 701-746
  258. Deepa SS, Unnikrishnan A, Matyi S, Hadad N and Richardson A (2018) Necroptosis increases with age and is reduced by dietary restriction. Aging Cell, e12770
  259. Martin-Montalvo A, Mercken EM, Mitchell SJ et al (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4, 2192 https://doi.org/10.1038/ncomms3192
  260. Chen H, Zheng X, Xiao D and Zheng Y (2016) Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence. Aging Cell 15, 542-552 https://doi.org/10.1111/acel.12465
  261. De Cecco M, Criscione SW, Peterson AL, Neretti N, Sedivy JM and Kreiling JA (2013) Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (Albany NY) 5, 867-883
  262. Hendrickson PG, Dorais JA, Grow EJ et al (2017) Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat Genet 49, 925-934 https://doi.org/10.1038/ng.3844
  263. Mita P, Wudzinska A, Sun X et al (2018) LINE-1 protein localization and functional dynamics during the cell cycle. Elife 7
  264. Ang YS, Tsai SY, Lee DF et al (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183-197 https://doi.org/10.1016/j.cell.2011.03.003
  265. Wang J, Geesman GJ, Hostikka SL et al (2011) Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self-renewal. Cell Cycle 10, 3016-3030 https://doi.org/10.4161/cc.10.17.17543
  266. Thomas CA, Tejwani L, Trujillo CA et al (2017) Modeling of TREX1-Dependent Autoimmune Disease using Human Stem Cells Highlights L1 Accumulation as a Source of Neuroinflammation. Cell Stem Cell 21, 319-331 e318 https://doi.org/10.1016/j.stem.2017.07.009
  267. Prudencio M, Gonzales PK, Cook CN et al (2017) Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients. Hum Mol Genet 26, 3421-3431 https://doi.org/10.1093/hmg/ddx233
  268. Sephton CF, Cenik C, Kucukural A et al (2011) Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. J Biol Chem 286, 1204-1215 https://doi.org/10.1074/jbc.M110.190884
  269. Polymenidou M, Lagier-Tourenne C, Hutt KR et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14, 459-468 https://doi.org/10.1038/nn.2779
  270. Shan X, Chiang PM, Price DL and Wong PC (2010) Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci U S A 107, 16325-16330 https://doi.org/10.1073/pnas.1003459107
  271. Rodic N, Sharma R, Sharma R et al (2014) Long Interspersed Element-1 Protein Expression Is a Hallmark of Many Human Cancers. Am J Pathol 184, 1280-1286 https://doi.org/10.1016/j.ajpath.2014.01.007