Neuropeptide Signaling Regulates Pheromone-Mediated Gene Expression of a Chemoreceptor Gene in C. elegans

  • Park, Jisoo (Department of Brain and Cognitive Sciences, DGIST) ;
  • Choi, Woochan (Department of Brain and Cognitive Sciences, DGIST) ;
  • Dar, Abdul Rouf (Department of Chemistry, University of Florida) ;
  • Butcher, Rebecca A. (Department of Chemistry, University of Florida) ;
  • Kim, Kyuhyung (Department of Brain and Cognitive Sciences, DGIST)
  • Received : 2018.09.18
  • Accepted : 2018.10.17
  • Published : 2019.01.31


Animals need to be able to alter their developmental and behavioral programs in response to changing environmental conditions. This developmental and behavioral plasticity is mainly mediated by changes in gene expression. The knowledge of the mechanisms by which environmental signals are transduced and integrated to modulate changes in sensory gene expression is limited. Exposure to ascaroside pheromone has been reported to alter the expression of a subset of putative G protein-coupled chemosensory receptor genes in the ASI chemosensory neurons of C. elegans (Kim et al., 2009; Nolan et al., 2002; Peckol et al., 1999). Here we show that ascaroside pheromone reversibly represses expression of the str-3 chemoreceptor gene in the ASI neurons. Repression of str-3 expression can be initiated only at the L1 stage, but expression is restored upon removal of ascarosides at any developmental stage. Pheromone receptors including SRBC-64/66 and SRG-36/37 are required for str-3 repression. Moreover, pheromone-mediated str-3 repression is mediated by FLP-18 neuropeptide signaling via the NPR-1 neuropeptide receptor. These results suggest that environmental signals regulate chemosensory gene expression together with internal neuropeptide signals which, in turn, modulate behavior.

E1BJB7_2019_v42n1_28_f0001.png 이미지

Fig. 1. str-3 repression upon crude pheromone exposure is imposed from egg to the L1 stage.

E1BJB7_2019_v42n1_28_f0002.png 이미지

Fig. 2. Exposure to ascaroside pheromone components causes str-3 repression via pheromone receptors in L1 larvae and adults.

E1BJB7_2019_v42n1_28_f0003.png 이미지

Fig. 3. str-3 expression is not modulated by the quality or the quantity of food or ambient temperature.

E1BJB7_2019_v42n1_28_f0004.png 이미지

Fig. 4. FLP-18 neuropeptide and NPR-1 neuropeptide receptor are required for pheromone-mediated str-3 repression.


Supported by : National Research Foundation of Korea, Ministry of Science, ICT and Future Planning


  1. Bargmann, C.I., Hartwieg, E., and Horvitz, H.R. (1993). Odorantselective genes and neurons mediate olfaction in C. elegans. Cell 74, 515-527.
  2. Barth, A.L., Justice, N.J., and Ngai, J. (1996). Asynchronous onset of odorant receptor expression in the developing zebrafish olfactory system. Neuron 16, 23-34.
  3. Butcher, R.A., Fujita, M., Schroeder, F.C., and Clardy, J. (2007). Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 3, 420-422.
  4. Butcher, R.A., Ragains, J.R., Kim, E., and Clardy, J. (2008). A potent dauer pheromone component in Caenorhabditis elegan that acts synergistically with other components. Proc. Natl. Acad. Sci. USA 105, 14288-14292.
  5. Cassada, R.C., and Russell, R.L. (1975). The dauerlarva, a postembryonic developmental variant of the nematode Caenorhabditis elegans . Dev. Biol. 46, 326-342.
  6. Cohen, M., Reale, V., Olofsson, B., Knights, A., Evans, P., and de Bono, M. (2009). Coordinated regulation of foraging and metabolism in C. elegans by RFamide neuropeptide signaling. Cell Metab. 9, 375-385.
  7. Edison, A.S. (2009). Caenorhabditis elegans pheromones regulate multiple complex behaviors. Curr. Opin. Neurobiol. 19, 378-388.
  8. Fox, A.N., Pitts, R.J., Robertson, H.M., Carlson, J.R., and Zwiebel, L.J. (2001). Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding. Proc. Natl. Acad. Sci. USA 98, 14693-14697.
  9. Golden, J.W., and Riddle, D.L. (1982). A pheromone influences larval development in the nematode Caenorhabditis elegans. Science 218, 578-580.
  10. Golden, J.W., and Riddle, D.L. (1984). The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev. Biol. 102, 368-378.
  11. Greene, J.S., Brown, M., Dobosiewicz, M., Ishida, I.G., Macosko, E.Z., Zhang, X., Butcher, R.A., Cline, D.J., McGrath, P.T., and Bargmann, C.I. (2016). Balancing selection shapes density-dependent foraging behaviour. Nature 539, 254-258.
  12. Gruner, M., Grubbs, J., McDonagh, A., Valdes, D., Winbush, A., and van der Linden, A.M. (2016). Cell-autonomous and non-cellautonomous regulation of a feeding state-dependent Chemoreceptor gene via MEF-2 and bHLH transcription factors. PLoS Genet. 12, e1006237.
  13. Gruner, M., Nelson, D., Winbush, A., Hintz, R., Ryu, L., Chung, S.H., Kim, K., Gabel, C.V., and van der Linden, A.M. (2014). Feeding state, insulin and NPR-1 modulate chemoreceptor gene expression via integration of sensory and circuit inputs. PLoS Genet. 10, e1004707.
  14. Hirsh, D., and Vanderslice, R. (1976). Temperature-sensitive developmental mutants of Caenorhabditis elegans . Dev. Biol. 49, 220-235.
  15. Hong, M., Ryu, L., Ow, M.C., Kim, J., Je, A.R., Chinta, S., Huh, Y.H., Lee, K.J., Butcher, R.A., Choi, H., et al. (2017). Early pheromone experience modifies a synaptic activity to influence adult pheromone responses of C. elegans. Curr. Biol. 27, 3168-3177 e3163.
  16. Hosono, R., Nishimoto, S., and Kuno, S. (1989). Alterations of life span in the nematode Caenorhabditis elegans under monoxenic culture conditions. Exp. Gerontol. 24, 251-264.
  17. Jang, H., Kim, K., Neal, S.J., Macosko, E., Kim, D., Butcher, R.A., Zeiger, D.M., Bargmann, C.I., and Sengupta, P. (2012). Neuromodulatory state and sex specify alternative behaviors through antagonistic synaptic pathways in C. elegans. Neuron 75, 585-592.
  18. Jeong, P.Y., Jung, M., Yim, Y.H., Kim, H., Park, M., Hong, E., Lee, W., Kim, Y.H., Kim, K., and Paik, Y.K. (2005). Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433, 541-545.
  19. Kim, K., Sato, K., Shibuya, M., Zeiger, D.M., Butcher, R.A., Ragains, J.R., Clardy, J., Touhara, K., and Sengupta, P. (2009). Two chemoreceptors mediate developmental effects of dauer pheromone in C. elegans. Science 326, 994-998.
  20. Ludewig, A.H., and Schroeder, F.C. (2013). Ascaroside signaling in C. elegans. WormBook, 1-22.
  21. McGrath, P.T., Xu, Y., Ailion, M., Garrison, J.L., Butcher, R.A., and Bargmann, C.I. (2011). Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature 477, 321-325.
  22. Neal, S.J., Park, J., DiTirro, D., Yoon, J., Shibuya, M., Choi, W., Schroeder, F.C., Butcher, R.A., Kim, K., and Sengupta, P. (2016). A forward genetic screen for molecules involved in pheromoneinduced dauer formation in Caenorhabditis elegans. G3 (Bethesda) 6, 1475-1487.
  23. Nolan, K.M., Sarafi-Reinach, T.R., Horne, J.G., Saffer, A.M., and Sengupta, P. (2002). The DAF-7 TGF-beta signaling pathway regulates chemosensory receptor gene expression in C. elegans. Genes. Dev. 16, 3061-3073.
  24. Park, D., Hahm, J.H., Park, S., Ha, G., Chang, G.E., Jeong, H., Kim, H., Kim, S., Cheong, E., and Paik, Y.K. (2017). A conserved neuronal DAF-16/FoxO plays an important role in conveying pheromone signals to elicit repulsion behavior in Caenorhabditis elegans. Sci. Rep. 7, 7260.
  25. Peckol, E.L., Troemel, E.R., and Bargmann, C.I. (2001). Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 98, 11032-11038.
  26. Peckol, E.L., Zallen, J.A., Yarrow, J.C., and Bargmann, C.I. (1999). Sensory activity affects sensory axon development in C. elegans. Development 126, 1891-1902.
  27. Robertson, H.M., and Thomas, J.H. (2006). The putative chemoreceptor families of C. elegans. WormBook, 1-12.
  28. Rogers, C., Reale, V., Kim, K., Chatwin, H., Li, C., Evans, P., and de Bono, M. (2003). Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nat. Neurosci. 6, 1178-1185.
  29. Ryan, D.A., Miller, R.M., Lee, K., Neal, S.J., Fagan, K.A., Sengupta, P., and Portman, D.S. (2014). Sex, age, and hunger regulate behavioral prioritization through dynamic modulation of chemoreceptor expression. Curr. Biol. 24, 2509-2517.
  30. Ryu, S.E., Shim, T., Yi, J.Y., Kim, S.Y., Park, S.H., Kim, S.W., Ronnett, G.V., and Moon, C. (2017). Odorant receptors containing conserved amino acid sequences in transmembrane domain 7 display distinct expression patterns in mammalian tissues. Mol. Cells 40, 954-965.
  31. Ryu, L., Cheon, Y., Huh, Y.H., Pyo, S., Chinta, S., Choi, H., Butcher, R.A., and Kim, K. (2018). Feeding state regulates pheromonemediated avoidance behavior via the insulin signaling pathway in Caenorhabditis elegans. EMBO J 37, e98402.
  32. Satterlee, J.S., Ryu, W.S., and Sengupta, P. (2004). The CMK-1 CaMKI and the TAX-4 Cyclic nucleotide-gated channel regulate thermosensory neuron gene expression and function in C. elegans. Curr. Biol. 14, 62-68.
  33. Sengupta, P. (2013). The belly rules the nose: feeding statedependent modulation of peripheral chemosensory responses. Curr. Opin. Neurobiol. 23, 68-75.
  34. Sengupta, P., Chou, J.H., and Bargmann, C.I. (1996). odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84, 899-909.
  35. Sieburth, D., Madison, J.M., and Kaplan, J.M. (2007). PKC-1 regulates secretion of neuropeptides. Nat. Neurosci. 10, 49-57.
  36. Speese, S., Petrie, M., Schuske, K., Ailion, M., Ann, K., Iwasaki, K., Jorgensen, E.M., and Martin, T.F. (2007). UNC-31 (CAPS) is required for dense-core vesicle but not synaptic vesicle exocytosis in Caenorhabditis elegans. J. Neurosci. 27, 6150-6162.
  37. Srinivasan, J., Kaplan, F., Ajredini, R., Zachariah, C., Alborn, H.T., Teal, P.E., Malik, R.U., Edison, A.S., Sternberg, P.W., and Schroeder, F.C. (2008). A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 454, 1115-1118.
  38. Srinivasan, J., von Reuss, S.H., Bose, N., Zaslaver, A., Mahanti, P., Ho, M.C., O'Doherty, O.G., Edison, A.S., Sternberg, P.W., and Schroeder, F.C. (2012). A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS Biol. 10, e1001237.
  39. Suo, S., Kimura, Y., and Van Tol, H.H. (2006). Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegan. J. Neurosci. 26, 10082-10090.
  40. Troemel, E.R., Chou, J.H., Dwyer, N.D., Colbert, H.A., and Bargmann, C.I. (1995). Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 83, 207-218.
  41. Zhou, Y., Wang, Y., Zhang, X., Bhar, S., Jones Lipinski, R.A., Han, J., Feng, L., and Butcher, R.A. (2018). Biosynthetic tailoring of existing ascaroside pheromones alters their biological function in C. elegans. Elife 7, e233286.