DOI QR코드

DOI QR Code

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei (School of Urban Construction, Yangtze University) ;
  • Ren, Wenting (School of Urban Construction, Yangtze University) ;
  • Zou, Zhengtao (School of Urban Construction, Yangtze University) ;
  • Chen, Yiguang (School of Urban Construction, Yangtze University) ;
  • Xie, Wei (School of Urban Construction, Yangtze University) ;
  • Li, Xianjie (School of Urban Construction, Yangtze University)
  • Received : 2017.11.09
  • Accepted : 2018.12.17
  • Published : 2019.01.25

Abstract

The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

Acknowledgement

Supported by : Natural Science Foundation of Hubei Province of China, Natural Science Foundation of China, Science Foundation of the Education Department of Hubei Province of China

References

  1. 318 AC (2004), Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05), American Concrete Institute, Farmington Hills, MI, USA.
  2. AIJ-SRC (2010), Standard for the Calculation of Steel-Reinforced Concrete Structures, Architectural Institute of Japan; Tokyo, Japan.
  3. ANSI/AISC 341-05 (2005), Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, USA.
  4. Chen, C.C. and Lin, N.J. (2006), "Analytical model for predicting axial capacity and behavior of concrete encased steel composite stub columns", J. Constr. Steel Res., 62(5), 424-433. https://doi.org/10.1016/j.jcsr.2005.04.021
  5. Chen, J., Liu, X., Liu, H. and Zeng, L. (2018), "Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber", Steel Compos. Struct., 27(2), 193-200. https://doi.org/10.12989/SCS.2018.27.2.193
  6. Deierlein, G.G. and Noguchi, H. (2004), "Overview of U.S.-Japan research on the seismic design of composite reinforced concrete and steel moment frame structures", J. Struct. Eng., 130(2), 361-367. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(361)
  7. ENV 1994-1-1 (1994), Common Unified Rules for Composite Steel and Concrete Structures (EUROCODE 4), European Committee for Standardization, Brussel, Belgium.
  8. Fu, J., Wu, Y and Yang, Y.B. (2015), "Effect of reinforcement strength on seismic behavior of concrete moment frames", Earthq. Struct., 9(4), 699-718. https://doi.org/10.12989/eas.2015.9.4.699
  9. GB50010-2010 (2010), Code for Design of Concrete Structures, China Academy of Building Research, Beijing, China
  10. GB50011-2010 (2010), Code for Seismic Design of Buildings, China Academy of Building Research, Beijing, China
  11. JGJ101-96 (1997), Specificating of Testing Methods for Earthquake Resistant Building, China Academy of Building Research, Beijing, China
  12. JGJ138-2001 (2001), Technical Specification for Steel Reinforced Concrete Composite Structures, China Academy of Building Research, Beijing, China.
  13. Liao, F.Y, Han, L.H. and Tao, Z. (2014), "Behaviour of composite joints with concrete encased CFST columns under cyclic loading: Experiments", Eng. Struct., 59(2), 745-764. https://doi.org/10.1016/j.engstruct.2013.11.030
  14. Lima, C., Martinelli, E., Macorini, L. and Izzuddin, B.A. (2017), "Modelling beam-to-column joints in seismic analysis of RC frames", Earthq. Struct., 12(1), 119-133. https://doi.org/10.12989/eas.2017.12.1.119
  15. Liu, Z.Q., Xue, J.Y, Zhao, H.T. and Gao, L. (2014), "Cyclic test for solid steel reinforced concrete frames with special-shaped columns", Earthq. Struct., 7(3), 317-331. https://doi.org/10.12989/eas.2014.7.3.317
  16. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  17. Pecce, M. and Rossi, F. (2013), "The non-linear model of embedded steel-concrete composite column bases", Eng. Struct., 46(1), 247-263. https://doi.org/10.1016/j.engstruct.2012.07.021
  18. Piloto, P.A.G., Ramos-Gavilan, A.B., Goncalves, C. and Mesquita, L.M.R. (2017), "Experimental bending tests of partially encased beams at elevated temperatures", Fire Saf. J., 92, 23-41. https://doi.org/10.1016/j.firesaf.2017.05.014
  19. Qi, H., Guo, L., Liu, J., Gan, D. and Zhang, S. (2011), "Axial load behavior and strength of tubed steel reinforced-concrete (SRC) stub columns", Thin Wall. Struct., 49(9), 1141-1150. https://doi.org/10.1016/j.tws.2011.04.006
  20. Roeder, C.W., Chmielowski, R. and Brown, C.B. (1999), "Shear connector requirements for embedded steel sections", J. Struct. Eng., 125(2), 142-151. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:2(142)
  21. Roik, K. and Bergmann, R. (1990), "Design method for composite columns with unsymmetrical cross-sections", J. Constr. Steel Res., 15(1), 153-168. https://doi.org/10.1016/0143-974X(90)90046-J
  22. Shanmugam, N.E. and Lakshmi, B. (2001), "State of the art report on steel-concrete composite columns", J. Constr. Steel Res., 57(10), 1041-1080. https://doi.org/10.1016/S0143-974X(01)00021-9
  23. Tokgoz, S. and Dundar, C. (2008), "Experimental tests on biaxially loaded concrete-encased composite columns", Steel Compos. Struct., 8(5), 423-438. https://doi.org/10.12989/scs.2008.8.5.423
  24. Tong, L., Liu, B., Xian, Q. and Zhao, X.L. (2016), "Experimental study on fatigue behavior of Steel Reinforced Concrete (SRC) beams", Eng. Struct., 123, 247-262. https://doi.org/10.1016/j.engstruct.2016.05.052
  25. Wang, P., Shi, Q.X., Wang, Q.W. and Tao, Y (2015) "Experimental behavior and shear bearing capacity calculation of RC columns with a vertical splitting failure", Earthq. Struct., 9(6), 1233-1250. https://doi.org/10.12989/eas.2015.9.6.1233
  26. Xiao, YF., Zeng, L., Cui, Z.K., Jin, S.Q. and Chen, YG. (2017), "Experimental and analytical performance evaluation of steel beam to concrete-encased composite column with unsymmetrical steel section joints", Steel Compos. Struct., 23(1), 17-29. https://doi.org/10.12989/scs.2017.23.1.017
  27. Xue, J., Qi, L., Gao L. and Liu, Z. (2016), "Mechanical behavior of lattice steel reinforced concrete inner frame with irregular section columns under cyclic reversed loading", Eng. Struct., 128, 225-236. https://doi.org/10.1016/j.engstruct.2016.09.045
  28. Zeng, L., Parvasi, S.M., Kong, Q.Z., Huo, L.S., Lim, L., Li, M. and Song, G.B. (2015), "Bond slip detection of concrete-encased composite structure using shear wave based active sensing approach", Smart Mater. Struct., 24(12), 125026. https://doi.org/10.1088/0964-1726/24/12/125026
  29. Zeng, L., Xiao, Y, Chen, Y, Jin, S., Xie, W. and Li, X. (2017), "Seismic damage evaluation of concrete-encased steel frame-reinforced concrete core tube buildings based on dynamic characteristics", Appl. Sci., 7(4), 314. https://doi.org/10.3390/app7040314
  30. Zhang, J. and Jia, J. (2016), "Experimental study on seismic behavior of composite frame consisting of SRC beams and SRUHSC columns subjected to cyclic loading", Constr. Build. Mater., 125, 1055-1065. https://doi.org/10.1016/j.conbuildmat.2016.08.157
  31. Zhou, K.J.H., Ho, J.C.M. and Su, R.K.L. (2010), "Normalised rotation capacity for deformability evaluation of high-performance concrete beams", Earthq. Struct., 1(3), 269-287. https://doi.org/10.12989/eas.2010.1.3.269