DOI QR코드

DOI QR Code

Characterization of contribution of vehicle emissions to ambient NO2 using stable isotopes

안정동위원소를 이용한 이동오염원에 의한 대기 중 NO2의 거동특성 연구

  • Park, Kwang-Su (Chemical Research Division, National Institute of Environmental Research) ;
  • Kim, Hyuk (Chemical Research Division, National Institute of Environmental Research) ;
  • Yu, Suk-Min (Chemical Research Division, National Institute of Environmental Research) ;
  • Noh, Seam (Chemical Research Division, National Institute of Environmental Research) ;
  • Park, Yu-Mi (Chemical Research Division, National Institute of Environmental Research) ;
  • Seok, Kwang-Seol (Chemical Research Division, National Institute of Environmental Research) ;
  • Kim, Min-Seob (Environmental Measurement and Analysis Center, National Institute of Environmental Research) ;
  • Yoon, Suk Hee (Environmental Measurement and Analysis Center, National Institute of Environmental Research) ;
  • Kim, Young-Hee (Chemical Research Division, National Institute of Environmental Research)
  • 박광수 (국립환경과학원 화학물질연구과) ;
  • 김혁 (국립환경과학원 화학물질연구과) ;
  • 유석민 (국립환경과학원 화학물질연구과) ;
  • 노샘 (국립환경과학원 화학물질연구과) ;
  • 박유미 (국립환경과학원 화학물질연구과) ;
  • 석광설 (국립환경과학원 화학물질연구과) ;
  • 김민섭 (국립환경과학원 환경측정분석센터) ;
  • 윤숙희 (국립환경과학원 환경측정분석센터) ;
  • 김영희 (국립환경과학원 화학물질연구과)
  • Received : 2018.10.17
  • Accepted : 2019.02.01
  • Published : 2019.02.25

Abstract

Sources of NOx are both anthropogenic (e.g. fossil fuel combustion, vehicles, and other industrial processes) and natural (e.g. lightning, biogenic soil processes, and wildfires). The nitrogen stable isotope ratio of NOx has been proposed as an indicator for NOx source partitioning, which would help identify the contributions of various NOx sources. In this study, the ${\delta}^{15}N-NO_2$ values of vehicle emissions were measured in an urban region, to understand the sources and processes that influence the isotopic composition of NOx emissions. The Ogawa passive air sampler was used to determine the isotopic composition of $NO_2$(g). In urban tunnels, the observed $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values averaged $3809{\pm}2656ppbv$ and $7.7{\pm}1.8$‰, respectively. The observed ${\delta}^{15}N-NO_2$ values are associated with slight regional variations in the vehicular $NO_2$ source. Both $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values were significantly higher near the expressway ($965{\pm}125ppbv$ and $5.9{\pm}1.4$‰) than at 1.1 km from the expressway ($372{\pm}96ppbv$ and $-11.5{\pm}2.9$‰), indicating a high proportion of vehicle emissions. Ambient ${\delta}^{15}N-NO_2$ values were used in a binary mixing model to estimate the percentage of the ${\delta}^{15}N-NO_2$ value contributed by vehicular NOx emissions. The calculated percentage of the ${\delta}^{15}N-NO_2$ contribution by vehicles was significantly higher close to the highway, as observed for the $NO_2$ concentration and ${\delta}^{15}N-NO_2$.

Keywords

nitrogen dioxide;stable isotope;passive air sampler;vehicle emission

BGHHBN_2019_v32n1_17_f0001.png 이미지

Fig. 1. Sampling sites for NO2 passive air samplers at Yang-Jae IC.

BGHHBN_2019_v32n1_17_f0002.png 이미지

Fig. 2. Plot of NO2 concentration (a) and δ15N-NO2 (b) by distances from expressway at near the Yang-Jae IC.

BGHHBN_2019_v32n1_17_f0003.png 이미지

Fig. 3. Estimated to contribution of NO2 using δ15N-NO2 from Yang-Jae IC.

Table 1. Stable isotopic compositions and concentration of NO2 and NO3

BGHHBN_2019_v32n1_17_t0001.png 이미지

Table 2. Stable isotopic compositions and concentration of NO2 from Yang-Jae IC

BGHHBN_2019_v32n1_17_t0002.png 이미지

Acknowledgement

Supported by : 국립환경과학원, 한국기초과학지원연구원

References

  1. E. M. Elliott, C. Kendall, S. D. Wankel, E. W. Boyer, D. A. Burns, G. G. Learm, H. E. Golden, K. Harlin, A. Bytnerowicz, T. J. Butler, and R. Glatz, J. Geophys. Res., 114, 148-227 (2009).
  2. C. Kendall, E. M. Elliot, and S. D. Wankel, 'Stable Isotopes in Ecology and Environmental Science', 2nd Ed., 375-449, Blackwell publishing, 2007.
  3. J. D. Felix and E. M. Elliott, Atmos. Environ., 92, 359-366 (2014). https://doi.org/10.1016/j.atmosenv.2014.04.005
  4. W. W. Walters, S. R. Goodwin, and G. M. Michalski, Environ. Sci. Technol., 49, 2278-2285 (2015). https://doi.org/10.1021/es505580v
  5. J. D. Felix, E. M. Elliott, and S. L. Shaw, Environ. Sci. Technol., 46, 3528-3535 (2012). https://doi.org/10.1021/es203355v
  6. Ministry of Environment Notification No. 2017-51 (2017.11.17), Republic of Korea.
  7. United States Environmental Protection Agancy, 'Determinations of Nitrogen Oxide Emissions from Stationary Sources', 2017.
  8. J. G. Coughlin, Z. Yu, and E. M. Elliott, Rapid Commun. Mass Spectrom., 31, 1211-1220 (2007). https://doi.org/10.1002/rcm.7885
  9. I. S. Kim, K. S. Lee, Y. S. Bong, J. K. Ryu, and K. G. Kim, J. Geol. Soc. Korea, 48(4), 351-356 (2012).
  10. Y, H. Kim, K. S. Seok, Y. M. Park, J. Y. Kim, M. S. Kim, J. J. Park, S. M. Yu, K. S. Park, M. J. Kim, J. S. Park, J. S. Kim, and H. M. Yoo, 'Building data library of stable isotopic compositions for anthropogenic emissions', 2nd Ed., Annual report of NIER. 2015 (unpublished data).
  11. E. M. Elliott, C. Kendall, S. D. Wankel, D. A. Burns, E. W. Boyer, K. Harlin, D. J. Bain, and T. J. Butler, Environ. Sci. Technol., 41, 7661-7667 (2007). https://doi.org/10.1021/es070898t
  12. K. D. Kim, H. K. Ko, T. J. Lee, and D. S. Kim, J. Korea Soc. Atmos. Environ., 27(4), 405-415 (2011). https://doi.org/10.5572/KOSAE.2011.27.4.405
  13. G. Y. Kim, K. H. So, H. C. Jeong, K. M. Shim, S. B. Lee, and D. B. Lee, J. Anal. Sci. Technol., 43(6), 880-885 (2010).
  14. G. Bird, Envion. Inter., 37, 802-819 (2011). https://doi.org/10.1016/j.envint.2011.02.007