DOI QR코드

DOI QR Code

Simultaneous uptake of arsenic and lead using Chinese brake ferns (Pteris vittata) with EDTA and electrodics

Butcher, David J.;Lim, Jae-Min

  • Received : 2018.11.18
  • Accepted : 2019.01.28
  • Published : 2019.02.25

Abstract

Chinese brake fern (Pteris vittata) has potential for application in the phytoremediation of arsenic introduced by lead arsenate-based pesticides. In this study, Chinese brake ferns were used to extract arsenic, mainly in field and greenhouse experiments, and to assess the performance of simultaneous phytoaccumulation of arsenic and lead from homogenized soil in the greenhouse, with the application of EDTA and electric potential. The ferns have been shown to be effective in accumulating high concentrations of arsenic, and extracting both arsenic and lead from the contaminated soil, with the addition of a chelating agent, EDTA. The maximum increase in lead accumulation in the ferns was 9.2 fold, with a 10 mmol/kg addition of EDTA. In addition, the application of EDTA in combination with electric potential increased the lead accumulation in ferns by 10.6 fold at 5 mmol/kg of EDTA and 40 V (dc), compared to controls. Therefore, under application of EDTA and electric potential, Chinese brake fern is able to extract arsenic and lead simultaneously from soil contaminated by lead arsenate.

Keywords

Phytoremediation;Arsenic;Lead;Lead arsenate;Chinese brake fern;EDTA;Electrodics;ICP-OES

References

  1. I. Raskin and B. D. Ensley, 'Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment', John Wiley, New York, 2000.
  2. N. Terry and G. S. Banuelos, 'Phytoremediation of Contaminated Soil and Water', Lewis Publishers, Baca Raton, 2000.
  3. F. J. Peryea and T. L. Creger, Water Air Soil Pollut., 78, 297 (1994). https://doi.org/10.1007/BF00483038
  4. USEPA (U.S. Environmental Protection Agency), 'Integrated risk information system (IRIS): arsenic, inorganic', CASRN 7440-38-2, Cincinnati, OH, 1998.
  5. S. Wolz, R. A. Fenske, N. J. Simcox, G. Palcisko, and J. C. Kissel, Environmental Research, 93, 293 (2003). https://doi.org/10.1016/S0013-9351(03)00064-1
  6. L. L. Embrick, K. M. Porter, A. Pendergrass, and D. J. Butcher, Microchem. J., 81, 117 (2005). https://doi.org/10.1016/j.microc.2005.01.007
  7. A. Pendergrass and D. J. Butcher, Microchem. J., 83, 14 (2006). https://doi.org/10.1016/j.microc.2005.12.003
  8. L. Q. Ma, K. M. Komar, W. Zhang, Y. Cai, and E. D. Kennelley, Nature, 409, 579 (2001). https://doi.org/10.1038/35054664
  9. M. I. S. Gonzaga, J. A. G. Santos, and L. Q. Ma, Environmental Pollution, 154, 212 (2008). https://doi.org/10.1016/j.envpol.2007.10.011
  10. A. L. Salido, K. L. Hasty, J.-M. Lim, and D. J. Butcher, Int. J. Phytoremediat., 5, 89 (2003).
  11. J.-M. Lim, A. L. Salido, and D. J. Butcher, Microchem. J., 76, 3 (2004). https://doi.org/10.1016/j.microc.2003.10.002
  12. J.-M. Lim, B. Jin, and D. J. Butcher, Bull. Korean Chem. Soc., 33, 2737 (2012). https://doi.org/10.5012/bkcs.2012.33.8.2737
  13. S. Tu, L. Q. Ma, A. O. Fayiga, and E. J. Zillioux, Int. J. Phytoremediat., 6, 35 (2004). https://doi.org/10.1080/16226510490439972
  14. P. R. Baldwin and D. J. Butcher, Microchem. J., 85, 297 (2007). https://doi.org/10.1016/j.microc.2006.07.005
  15. N. Caille, S. Swanwick, F. J. Zhao, and S. P. McGrath, Environmental Pollution, 132, 113 (2004). https://doi.org/10.1016/j.envpol.2004.03.018
  16. J. W. Huang, M. J. Blaylock, Y. Kapulnik, and B. D. Ensley, Environ. Sci. Technol., 32, 2004 (1998). https://doi.org/10.1021/es971027u
  17. M. J. Blaylock, D. E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B. D. Ensley, and I. Raskin, Environ. Sci. Technol., 31, 860 (1997). https://doi.org/10.1021/es960552a
  18. S. D. Ebbs and L. V. Kochian, Environ. Sci. Technol., 32, 802 (1998). https://doi.org/10.1021/es970698p

Acknowledgement

Supported by : Changwon National University