DOI QR코드

DOI QR Code

THE IDEAL OF WEAKLY p-NUCLEAR OPERATORS AND ITS INJECTIVE AND SURJECTIVE HULLS

  • Received : 2018.03.05
  • Accepted : 2018.05.03
  • Published : 2019.01.01

Abstract

We introduce a larger ideal ${\mathcal{N}}_{wp}$ of the ideal of p-nuclear operators. We obtain isometric representations of the injective and surjective hulls of ${\mathcal{N}}_{wp}$ and study them.

Keywords

Banach operator ideal;tensor norm;nuclear operator

References

  1. A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Mathematics Studies, 176, North-Holland Publishing Co., Amsterdam, 1993.
  2. J. M. Delgado, C. Pineiro, and E. Serrano, Density of finite rank operators in the Banach space of p-compact operators, J. Math. Anal. Appl. 370 (2010), no. 2, 498-505. https://doi.org/10.1016/j.jmaa.2010.04.058
  3. J. M. Delgado, C. Pineiro, and E. Serrano, Operators whose adjoints are quasi p-nuclear, Studia Math. 197 (2010), no. 3, 291-304. https://doi.org/10.4064/sm197-3-6
  4. J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995.
  5. J. H. Fourie, Injective and surjective hulls of classical p-compact operators with application to unconditionally p-compact operators, Studia Math. 240 (2018), no. 2, 147-159. https://doi.org/10.4064/sm8669-3-2017
  6. J. Fourie and J. Swart, Banach ideals of p-compact operators, Manuscripta Math. 26 (1978/79), no. 4, 349-362. https://doi.org/10.1007/BF01170259
  7. J. Fourie and J. Swart, Tensor products and Banach ideals of p-compact operators, Manuscripta Math. 35 (1981), no. 3, 343-351. https://doi.org/10.1007/BF01263268
  8. D. Galicer, S. Lassalle, and P. Turco, The ideal of p-compact operators: a tensor product approach, Studia Math. 211 (2012), no. 3, 269-286. https://doi.org/10.4064/sm211-3-8
  9. J. M. Kim, Unconditionally p-null sequences and unconditionally p-compact operators, Studia Math. 224 (2014), no. 2, 133-142. https://doi.org/10.4064/sm224-2-2
  10. J. M. Kim, The ideal of unconditionally p-compact operators, Rocky Mountain J. Math. 47 (2017), no. 7, 2277-2293.
  11. A. Persson and A. Pietsch, p-nukleare une p-integrale Abbildungen in Banachraumen, Studia Math. 33 (1969), 19-62. https://doi.org/10.4064/sm-33-1-19-62
  12. A. Pietsch, Operator Ideals, translated from German by the author, North-Holland Mathematical Library, 20, North-Holland Publishing Co., Amsterdam, 1980.
  13. N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, 38, Longman Scientific & Technical, Harlow, 1989.
  14. D. P. Sinha and A. K. Karn, Compact operators whose adjoints factor through subspaces of $l_p$, Studia Math. 150 (2002), no. 1, 17-33. https://doi.org/10.4064/sm150-1-3