• Cho, Jong Taek (Department of Mathematics Chonnam National University) ;
  • Kimura, Makoto (Department of Mathematics Faculty of Science Ibaraki University)
  • Received : 2018.01.23
  • Accepted : 2018.03.27
  • Published : 2019.01.01


We construct gradient Ricci solitons as n-dimensional submanifolds in $S^n{\times}S^n$ by using solutions of some nonlinear ODE.


gradient Ricci soliton;minimal submanifold;product manifold


Supported by : National Research Foundation of Korea(NRF), JSPS


  1. R. Bryant, Ricci flow solitons in dimensions three with SO(3)-symmetries, preprint.
  2. H.-D. Cao and Q. Chen, On locally conformally at gradient steady Ricci solitons, Trans. Amer. Math. Soc. 364 (2012), no. 5, 2377-2391.
  3. X. Cao, B. Wang, and Z. Zhang, On locally conformally at gradient shrinking Ricci solitons, Commun. Contemp. Math. 13 (2011), no. 2, 269-282.
  4. B.-Y. Chen, A survey on Ricci solitons on Riemannian submanifolds, in Recent advances in the geometry of submanifolds-dedicated to the memory of Franki Dillen (1963-2013), 27-39, Contemp. Math., 674, Amer. Math. Soc., Providence, RI, 2016.
  5. J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. (2) 61 (2009), no. 2, 205-212.
  6. J. T. Cho and M. Kimura, Ricci solitons of compact real hypersurfaces in Kahler manifolds, Math. Nachr. 284 (2011), no. 11-12, 1385-1393.
  7. J. T. Cho and M. Kimura, Ricci solitons on locally conformally at hypersurfaces in space forms, J. Geom. Phys. 62 (2012), no. 8, 1882-1891.
  8. B. Chow and D. Knopf, The Ricci Flow: an introduction, Mathematical Surveys and Monographs, 110, American Mathematical Society, Providence, RI, 2004.
  9. A. Derdzinski, Compact Ricci solitons, preprint.
  10. M. Eminenti, G. La Nave, and C. Mantegazza, Ricci solitons: the equation point of view, Manuscripta Math. 127 (2008), no. 3, 345-367.
  11. R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988.
  12. T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (1993), no. 4, 301-307.
  13. M. Kimura and K. Suizu, Fundamental theorems of Lagrangian surfaces in $S^2{\times}S^2$, Osaka J. Math. 44 (2007), no. 4, 829-850.
  14. N. Koiso, On rotationally symmetric Hamilton's equation for Kahler-Einstein metrics, Recent topics in differential and analytic geometry, 327-337, Adv. Stud. Pure Math., 18-I, Academic Press, Boston, MA, 1990.
  15. G. D. Ludden and M. Okumura, Some integral formulas and their applications to hypersurfaces of $S^n{\times}S^n$, J. Differential Geometry 9 (1974), 617-631.
  16. L. Ni and N. Wallach, On a classification of gradient shrinking solitons, Math. Res. Lett. 15 (2008), no. 5, 941-955.
  17. G. Perelman, The entropy formula for the Ricci flow and its geometric applications,, preprint.
  18. P. Petersen and W. Wylie, On gradient Ricci solitons with symmetry, Proc. Amer. Math. Soc. 137 (2009), no. 6, 2085-2092.
  19. P. Petersen and W. Wylie, On the classification of gradient Ricci solitons, Geom. Topol. 14 (2010), no. 4, 2277-2300.
  20. F. Urbano, On hypersurfaces of $S^2{\times}S^2$,, preprint.
  21. Z.-H. Zhang, On the completeness of gradient Ricci solitons, Pacific J. Math. 242 (2009), 189-200.