DOI QR코드

DOI QR Code

Granulations of SiOx Nanoparticles to Improve Electrochemical Properties as a Li-Ion Battery's Anode

리튬이온전지 음극용 SiOx 나노입자의 조대화를 통한 전기화학 특성 향상

  • Lee, Bora (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Lee, Jae Young (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Jang, Boyun (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Kim, Joonsoo (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Kim, Sung-Soo (Graduate School of Energy Science and Technology, Chungnam National University)
  • 이보라 (한국에너지기술연구원 분리변환소재연구실) ;
  • 이재영 (한국에너지기술연구원 분리변환소재연구실) ;
  • 장보윤 (한국에너지기술연구원 분리변환소재연구실) ;
  • 김준수 (한국에너지기술연구원 분리변환소재연구실) ;
  • 김성수 (충남대학교 에너지과학기술대학원)
  • Received : 2018.09.05
  • Accepted : 2018.10.19
  • Published : 2019.01.01

Abstract

$SiO_x$ nanoparticles were granulated, and their microstructures and effects on electrochemical behaviors were investigated. In spite of the promising electrochemical performance of $SiO_x$, nanoparticles have limitations such as high surface area, low density, and difficulty in handling during slurry processing. Granulation can be one solution. In this study, pelletizing and annealing were conducted to create particles with sizes of several decades of micron. Decrease in surface area directly influences the initial charge and discharge process when granules are applied as anode materials for Li-ion batteries. Lower surface area is key to decreasing the amount of irreversible phase-formation, such as $Li_2Si_2O_5$, $Li_2SiO_3$ and $Li_4SiO_4$, as well as forming the solid electrolyte interface. Additionally, aggregation of nanoparticles is required to obtain further enhancement of the electrochemical behavior due to restrictions that there be no $Li_4SiO_4$-related reaction during the first discharge process.

JJJRCC_2019_v32n1_70_f0001.png 이미지

Fig. 1. Process flow chart.

JJJRCC_2019_v32n1_70_f0002.png 이미지

Fig. 2. FE-SEM image of (a) nanoparticles (G0) and granulated microparticles by various annealing temperatures [(b) G1, (c) G2,and (d) G3].

JJJRCC_2019_v32n1_70_f0003.png 이미지

Fig. 3. XRD patterns of (a) nanoparticles (G0) and granulated microparticles by various annealing temperatures [(b) G1, (c) G2,and (d) G3].

JJJRCC_2019_v32n1_70_f0004.png 이미지

Fig. 4. Raman spectra of single crystalline Si as a reference, G0, and G3.

JJJRCC_2019_v32n1_70_f0005.png 이미지

Fig. 5. Cycle performances of nanoparticles (G0) and granulated microparticles by various annealing temperatures (G1, G2, and G3).

JJJRCC_2019_v32n1_70_f0006.png 이미지

Fig. 7. Initial reversible capacity (circle pattern), initial coulombicefficiency (square pattern), capacity retention (diamond pattern) andswelling after 50 cycles (triangle pattern) of G0, G1, G2, and G3.

JJJRCC_2019_v32n1_70_f0007.png 이미지

Fig. 6. (a) The first voltage profiles and (b) differential capacities of nanoparticles (G0) and granulated microparticles by various annealing temperatures (G1, G2, and G3).

Acknowledgement

Supported by : 한국에너지기술연구원

References

  1. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy Environ. Sci., 4, 3243 (2011). [DOI: https://doi.org/10.1039/C1EE01598B] https://doi.org/10.1039/c1ee01598b
  2. L. F. Cui, L. B. Hu, J. W. Choi, and Y. Cui, ACS Nano, 4, 3671 (2010). [DOI: https://doi.org/10.1021/nn100619m] https://doi.org/10.1021/nn100619m
  3. X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, ACS Nano, 6, 1522 (2012). [DOI: https://doi.org/10.1021/nn204476h] https://doi.org/10.1021/nn204476h
  4. M. T. McDowell, S. W. Lee, W. D. Nix, and Y. Cui, Adv. Mater., 25, 4966 (2013). [DOI: https://doi.org/10.1002/adma.201301795] https://doi.org/10.1002/adma.201301795
  5. I. W. Seong, K. T. Kim, and W. Y. Yoon, J. Power Sources, 189, 511 (2009). [DOI: https://doi.org/10.1016/j.jpowsour.2008.11.029] https://doi.org/10.1016/j.jpowsour.2008.11.029
  6. A. Netz, R. A. Huggins, and W. Weppner, J. Power Sources, 119, 95 (2003). [DOI: https://doi.org/10.1016/S0378-7753(03)00132-0] https://doi.org/10.1016/S0378-7753(03)00132-0
  7. X. Zhao, C. M. Hayner, M. C. Kung, and H. H. Kung, Adv. Energy Mater., 1, 1079 (2011). [DOI: https://doi.org/10.1002/aenm.201100426] https://doi.org/10.1002/aenm.201100426
  8. G. Zhao, L. Zhang, Y. Meng, N. Zhang, and K. Sun, Mater. Lett., 96, 170 (2013). [DOI: https://doi.org/10.1016/j.matlet.2013.01.073] https://doi.org/10.1016/j.matlet.2013.01.073
  9. Q. Si, M. Matsui, T. Horiba, O. Yamamoto, Y. Takeda, N. Seki, and N. Imanishi, J. Power Sources, 241, 744 (2013). [DOI: https://doi.org/10.1016/j.jpowsour.2013.05.090] https://doi.org/10.1016/j.jpowsour.2013.05.090
  10. Z. Zhang, Y. Wang, Q. Tan, D. Li, Y. Chen, Z. Zhong, and F. Su, Nanoscale, 6, 371 (2014). [DOI: https://doi.org/10.1039/C3NR04323A] https://doi.org/10.1039/C3NR04323A
  11. B. Y. Jang, J. S. Lee, and J. S. Kim, J. Nanosci. Nanotechnol., 13, 3690 (2013). [DOI: https://doi.org/10.1166/jnn.2013.7277] https://doi.org/10.1166/jnn.2013.7277
  12. J. Y. Li, Q. Xu, G. Li, Y. X. Yin, L. J. Wan, and Y. G. Guo, Mater. Chem. Front., 1, 1691 (2017). [DOI: https://doi.org/10.1039/C6QM00302H] https://doi.org/10.1039/C6QM00302H
  13. F. Luo, B. Liu, J. Zheng, G. Chu, K. Zhong, H. Li, X. Huang, and L. Chen, J. Electrochem. Soc., 162, A2509 (2015). [DOI: https://doi.org/10.1149/2.0131514jes] https://doi.org/10.1149/2.0131514jes
  14. D. C. Lin, Z. Lu, P. C. Hsu, H. R. Lee, N. Liu, J. Zhao, H. Wang, C. Liu, and Y. Cui, Energy Environ. Sci., 8, 2371 (2015). [DOI: https://doi.org/10.1039/C5EE01363A] https://doi.org/10.1039/C5EE01363A
  15. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, Appl. Phys. Lett., 80, 661 (2002). [DOI: https://doi.org/10.1063/1.1433906] https://doi.org/10.1063/1.1433906
  16. L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, J. Phys.: Condens. Matter, 15, S2887 (2003). [DOI: https://stacks.iop.org/JPhysCM/15/S2887] https://doi.org/10.1088/0953-8984/15/39/012
  17. K. Kamitsuji, S. Ueno, H. Suzuki, Y. Kimura, T. Sato, T. Tanigaki, O. Kido, M. Kurumada, and C. Kaito, Astron. Astrophys., 422, 975 (2004). [DOI: https://doi.org/10.1051/0004-6361:20034353] https://doi.org/10.1051/0004-6361:20034353
  18. Z. Zhao, F. Xue, Y. Mao, N. Chen, and T. Wang, Opt. Fiber Technol., 41, 193 (2018). [DOI: https://doi.org/10.1016/j.yofte.2018.01.016] https://doi.org/10.1016/j.yofte.2018.01.016
  19. M. Adachi, S. Fujii, M. Kiyama, Y. Yamamoto, S. Nishino, M. Omprakash, A. Yamamoto, A. Makino, and T. Takeuchi, Materials Today: Proceedings, 5, 10291 (2018). [DOI: https://doi.org/10.1016/j.matpr.2017.12.276] https://doi.org/10.1016/j.matpr.2017.12.276
  20. C. Hoeltgen, J. E. Lee, and B. Y. Jang, Electrochim. Acta, 222, 535 (2016) [DOI: https://doi.org/10.1016/j.electacta.2016.11.006]. https://doi.org/10.1016/j.electacta.2016.11.006
  21. S. Periasamy, S. Venkidusamy, R. Venkatesan, J. Mayandi, J. Pearce, J. H. Selj, and R. Veerabahu, Z. Phys. Chem., 231, 1585 (2017). [DOI: https://doi.org/10.1515/zpch-2016-0961]
  22. K. Yasuda, Y. Kashitani, S. Kizaki, K. Takeshita, T. Fujita, and S. Shimosaki, J. Power Sources, 329, 462 (2016). [DOI: https://doi.org/10.1016/j.jpowsour.2016.08.110] https://doi.org/10.1016/j.jpowsour.2016.08.110
  23. K. Ogata, E. Salager, C. J. Kerr, A. E. Fraser, C. Ducati, A. J. Morris, S. Hofmann, and C. P. Grey, Nat. Commun., 5, 3217 (2014). [DOI: https://doi.org/10.1038/ncomms4217] https://doi.org/10.1038/ncomms4217