DOI QR코드

DOI QR Code

Evaluation of Bonding Properties of Epoxy Solder Joints by High Temperature Aging Test

고온 시효 시험에 따른 Epoxy 솔더 접합부의 접합 특성 평가

  • Kang, Min-Soo (Department of Mechanical Engineering, Chung-Ang University) ;
  • Kim, Do-Seok (Department of Mechanical Engineering, Chung-Ang University) ;
  • Shin, Young-Eui (Department of Mechanical Engineering, Chung-Ang University)
  • 강민수 (중앙대학교 기계공학부) ;
  • 김도석 (중앙대학교 기계공학부) ;
  • 신영의 (중앙대학교 기계공학부)
  • Received : 2018.08.08
  • Accepted : 2018.10.01
  • Published : 2019.01.01

Abstract

Bonding properties of epoxy-containing solder joints were investigated by a high temperature aging test. Specimens were prepared by bonding an R3216 standard chip resistor to an OSP-finished PCB by a reflow process with two basic types of solder (SAC305 & Sn58Bi) pastes and two epoxy-solder (SAC305+epoxy & Sn58Bi+epoxy) pastes. In all epoxy solder joints, an epoxy fillet was formed in the hardened epoxy, lying around the outer edge of the solder joint, between the chip and the Cu pad. In order to analyze the bonding characteristics of solder joints at high temperatures, a high-temperature aging test at $150^{\circ}C$ was carried out for 14 days (336 h). After aging, the intermetallic compound $Cu_6Sn_5$ was found to have formed in the solder joint on the Cu pad, and the shear stress on the conventional solder joint was reduced by a significant amount. The reason that the shear force did not decrease much, even though in epoxy solder, was thatbecause epoxy hardened at the outer edge of the supported solder joints. Using epoxy solder, strong bonding behavior can be ensured due to this resistance to shear force, even in metallurgical changes such as those where intermetallic compounds form at solder joints.

JJJRCC_2019_v32n1_6_f0001.png 이미지

Fig. 1. Shape of R3216 chip.

JJJRCC_2019_v32n1_6_f0002.png 이미지

Fig. 2. Shape of specimens (a) pure Sn58Bi solder specimensand (b) epoxy solder specimens.

JJJRCC_2019_v32n1_6_f0003.png 이미지

Fig. 3. Schematic diagram of shear test.

JJJRCC_2019_v32n1_6_f0004.png 이미지

Fig. 4. Cross-section images of primary specimens (a) SAC305 solder joint, (b) epoxy SAC305 solder joint, (c) Sn58Bi solder joint, and (d) epoxy Sn58Bi solder joint.

JJJRCC_2019_v32n1_6_f0005.png 이미지

Fig. 5. Intermetallic compound (IMC) layer in SAC305 and SAC305epoxy solder joint (a) before the test in plain solder joint, (b) afterthermal aging test in plain solder joint, (c) before the test in epoxysolder joint, and (d) after thermal aging test in epoxy solder joint.

JJJRCC_2019_v32n1_6_f0006.png 이미지

Fig. 7. Schematic diagram of shear test.

JJJRCC_2019_v32n1_6_f0007.png 이미지

Fig. 8. Graph of shear force drop.

JJJRCC_2019_v32n1_6_f0008.png 이미지

Fig. 9. Fracture surface of SAC305 and SAC305 epoxy solder joint(a) before the ageing test in plain solder joint, (b) after the ageing test in plain solder joint, (c) before the ageing test in epoxy solderjoint, and (d) after the ageing test in epoxy solder joint.

JJJRCC_2019_v32n1_6_f0009.png 이미지

Fig. 10. Fracture surface of Sn58Bi and Sn58Bi epoxy solder joint(a) before the ageing test in plain solder joint, (b) after the ageingtest in plain solder joint, (c) before the ageing test in epoxy solderjoint, and (d) after the ageing test in epoxy solder joint.

JJJRCC_2019_v32n1_6_f0010.png 이미지

Fig. 11. Graph of shear force drop.

JJJRCC_2019_v32n1_6_f0011.png 이미지

Fig. 6. Intermetallic compound (IMC) layer in Sn58Bi and Sn58Bi epoxy solder joint (a) before the test in plain solder joint, (b) after thermal aging test in plain solder joint, (c) before the test in epoxy solder joint, and (d) after thermal aging test in epoxy solder joint.

Table 1. Solder specification.

JJJRCC_2019_v32n1_6_t0001.png 이미지

Acknowledgement

Supported by : 한국연구재단

References

  1. S. W. Jung, M. S. Kang, Y. J. Jeon, D. S. Kim, and Y. E. Shin, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 152 (2016). [DOI: https://doi.org/10.4313/JKEM.2016.29.3.152] https://doi.org/10.4313/JKEM.2016.29.3.152
  2. Y. J. Jeon, S. I. Son, D. S. Kim, and Y. E. Shin, J. Korean Inst. Electr. Electron. Mater. Eng., 23, 611 (2010). [DOI: https://doi.org/10.4313/JKEM.2010.23.8.611] https://doi.org/10.4313/JKEM.2010.23.8.611
  3. A. S. Shin, D. Y. Ok, G. H. Jeong, M. J. Kim, C. S. Park, J. H. Kong, and C. H. Heo, J. Korean Inst. Electr. Electron. Mater. Eng., 23, 481 (2010). [DOI: https://doi.org/10.4313/JKEM.2010.23.6.481] https://doi.org/10.4313/JKEM.2010.23.6.481
  4. E. G. Chang, N. H. Kim, N. K. Kim, and J. C. Eom, J. Korean Inst. Electr. Electron. Mater. Eng., 17, 267 (2004). [DOI: https://doi.org/10.4313/JKEM.2004.17.3.267] https://doi.org/10.4313/JKEM.2004.17.3.267
  5. M. N. Ervina Efzan and I. Siti Norfarhani, Trans. Electr. Electron. Mater., 16, 112 (2015). [DOI: https://doi.org/10.4313/TEEM.2015.16.3.112] https://doi.org/10.4313/TEEM.2015.16.3.112
  6. P. L. Tu, Y. C. Chan, and J.K.L. Lai, IEEE Trans. Compon., Packag., Manuf. Technol., Part B, 20, 87 (1997). [DOI: https://doi.org/10.1109/96.554534] https://doi.org/10.1109/96.554534
  7. X. Ma, Y. Qian, and F. Yoshida, J. Alloys Compd., 334, 224 (2002). [DOI: https://doi.org/10.1016/S0925-8388(01)01747-9] https://doi.org/10.1016/S0925-8388(01)01747-9
  8. M. S. Kang, Y. J. Jeon, D. S. Kim, and Y. E. Shin, Int. J. Precis. Eng. Manuf., 17, 445 (2016). [DOI: https://doi.org/10.1007/s12541-016-0055-3] https://doi.org/10.1007/s12541-016-0055-3
  9. M. S. Kang, Y. J. Jeon, D. S. Kim, and Y. E. Shin, Int. J. Precis. Eng. Manuf., 16, 2483 (2015). [DOI: https://doi.org/10.1007/s12541-015-0319-3] https://doi.org/10.1007/s12541-015-0319-3
  10. K. Y. Kim, H. Jeong, W. R. Myung, and S. B. Jung, J. Weld. Joining, 36, 14 (2018). [DOI: https://doi.org/10.5781/JWJ.2018.36.2.3] https://doi.org/10.5781/JWJ.2018.36.2.3
  11. B. S. Yim, Y. Kwon, S. H. Oh, J. Kim, Y. E. Shin, S. H. Lee, and J. M. Kim, Microelectron. Reliab., 52, 1165 (2012). [DOI: https://doi.org/10.1016/j.microrel.2011.12.004] https://doi.org/10.1016/j.microrel.2011.12.004
  12. Y. G. Sung, W. R. Myung, H. Jeong, M. K. Ko, J. Moon, and S. B. Jung, J. Electron. Mater., 47, 4165 (2018). [DOI: https://doi.org/10.1007/s11664-018-6224-7] https://doi.org/10.1007/s11664-018-6224-7
  13. X. Deng, R. S. Sidhu, P. Johnson, and N. Chawla, Metall. Mater. Trans. A, 36, 55 (2005). [DOI: https://doi.org/10.1007/s11661-005-0138-8] https://doi.org/10.1007/s11661-005-0138-8
  14. I. E. Anderson and J. L. Harringa, J. Electron. Mater., 33, 1485 (2004). [DOI: https://doi.org/10.1007/s11664-004-0090-1] https://doi.org/10.1007/s11664-004-0090-1
  15. M. Yang, M. Li, L. Wang, Y. Fu, J. Kim, and L. Weng, J. Electron. Mater., 40, 176 (2011). [DOI: https://doi.org/10.1007/s11664-010-1430-y] https://doi.org/10.1007/s11664-010-1430-y
  16. A. Sharma, Y. J. Jang, J. B. Kim, and J. P. Jung, J. Alloys Compd., 704, 795 (2017). [DOI: https://doi.org/10.1016/j.jallcom.2017.02.036] https://doi.org/10.1016/j.jallcom.2017.02.036
  17. I. Cho, J. H. Ahn, J. W. Yoon, Y. E. Shin, and S. B. Jung, J. Mater. Sci.: Mater. Electron., 23, 1515 (2012). [DOI: https://doi.org/10.1007/s10854-012-0621-0] https://doi.org/10.1007/s10854-012-0621-0