Phenolic compounds removal by grasses and soil bacteria after land application of treated palm oil mill effluent: A pot study

  • Phonepaseuth, Phongphayboun (Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University) ;
  • Rakkiatsakul, Viroj (Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University) ;
  • Kachenchart, Boonlue (Faculty of Environment and Resource Studies, Mahidol University) ;
  • Suttinun, Oramas (Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University) ;
  • Luepromchai, Ekawan (Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University)
  • Received : 2018.04.12
  • Accepted : 2018.06.23
  • Published : 2019.03.31


Land application of treated palm oil mill effluent (TPOME) could be used as an alternative tertiary wastewater treatment process. However, phenolic compounds in TPOME might be leached to the environment. This study investigated the ability of grasses on reducing phenolic compounds in the leachate after TPOME application. Several pasture grasses in soil pots were compared after irrigating with TPOME from stabilization ponds, which contained 360-630 mg/L phenolic compounds. The number of soil bacteria in planted pots increased over time with the average of $10^8CFU/g$ for mature grasses, while only $10^4-10^6CFU/g$ were found in the unplanted control pots. The leachates from TPOME irrigated grass pots contained lower amounts of phenolic compounds and had lower phytotoxicity than that of control pots. The phenol removal efficiency of grass pots was ranged 67-93% and depended on grass cultivars, initial concentration of phenolic compounds and frequency of irrigations. When compared to water irrigation, TPOME led to an increased phenolic compounds accumulation in grass tissues and decreased biomass of Brachiaria hybrid and Brachiaria humidicola but not Panicum maximum. Consequently, the application of TPOME could be conducted on grassland and the grass species should be selected based on the utilization of grass biomass afterward.


  1. Singh RP, Ibrahim MH, Esa N, Iliyana MS. Composting of waste from palm oil mill: A sustainable waste management practice. Rev. Environ. Sci. Biotechnol. 2010;9:331-344.
  2. Khongkhaem P, Suttinun O, Intasiri A, Pinyakong O, Luepromchai E. Degradation of phenolic compounds in palm oil mill effluent by silica-immobilized bacteria in internal loop airlift bioreactors. Clean-Soil Air Water 2016;44:383-392.
  3. Kietkwanboot A, Tran HTY, Suttinun O. Simultaneous dephenolization and decolorization of treated palm oil mill effluent by oil palm fiber-immobilized Trametes hirsuta strain AK 04. Water Air Soil Pollut. 2015;226:345.
  4. Limkhuansuwan V, Chaiprasert P. Decolorization of molasses melanoidins and palm oil mill effluent phenolic compounds by fermentative lactic acid bacteria. J. Environ. Sci. 2010;22:1209-1217.
  5. Polprasert C, Liamlaem W. A Transdisciplinary Approach for Water Pollution Control: Case Studies on Application of Natural Systems. Environ. Eng. Res. 2014;19:185-195.
  6. Arienzo M, Christen EW, Quayle W, Kumar A. A review of the fate of potassium in the soil-plant system after land application of wastewaters. J. Hazard. Mater. 2009;164:415-422.
  7. Steinmetz Z, Kurtz MP, Dag A, Zipori I, Schaumann GE. The seasonal influence of olive mill wastewater applications on an orchard soil under semi-arid conditions. J. Plant Nutr. Soil Sci. 2015;178:641-648.
  8. Di Bene C, Pellegrino E, Debolini M, Silvestri N, Bonari E. Short- and long-term effects of olive mill wastewater land spreading on soil chemical and biological properties. Soil Biol. Biochem. 2013;56:21-30.
  9. Szuba A, Lorenc-Plucinska G. Utilization of proteomics in experimental field conditions - A case study of poplars growing on grassland affected by long-term starch wastewater irrigation. J. Proteomics. 2015;126:200-217.
  10. Liu YY, Haynes RJ. Influence of land application of dairy factory effluent on soil nutrient status and the size, activity, composition and catabolic capability of the soil microbial community. Appl. Soil Ecol. 2011;48:133-141.
  11. Bodini SF, Cicalini AR, Santori F. Rhizosphere dynamics during phytoremediation of olive mill wastewater. Bioresour. Technol. 2011;102:4383-4389.
  12. Phenrat T, Teeratitayangkul P, Prasertsung I, Parichatprecha R, Jitsangiam P, Chomchalow N, Wichai S. Vetiver plantlets in aerated system degrade phenol in illegally dumped industrial wastewater by phytochemical and rhizomicrobial degradation. Environ. Sci. Pollut. Res. 2017;24:13235-13246.
  13. Hare M, Tatsapong P, Phengphet S. Herbage yield and quality of Brachiaria cultivars, Paspalum atratum and Panicum maximum in north-east Thailand. Trop. Grassl. 2009;43:65-72.
  14. Rohrbacher F, St-Arnaud M. Root exudation: The ecological driver of hydrocarbon rhizoremediation. Agronomy 2016;6:19.
  15. Martin BC, George SJ, Price CA, Ryan MH, Tibbett M. The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci. Total Environ. 2014;472:642-653.
  16. Barlocher F, Graca MS. Total phenolics. In: Graca MS, Barlocher F, Gessner M, eds. Methods to study litter decomposition. Springer Netherlands; 2005. p. 97-100.
  17. Hancock P, Dean JR. Extraction and fate of phenols in soil. Anal. Commun. 1997;34:377-379.
  18. Klankeo P, Nopcharoenkul W, Pinyakong O. Two novel pyrene-degrading Diaphorobacter sp. and Pseudoxanthomonas sp. isolated from soil. J. Biosci. Bioeng. 2009;108:488-495.
  19. Lin D, Xing B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007;150:243-250.
  20. Nisha P, Sreedevi S. Phytotoxicity of mercury on seed germination in Vigna radiata (L.) Wilczek. In: Binoj Kumar MS, Gopalakrishnan PK, eds. Biodiversity conservation. Scientific Publishers; 2008. p. 227-234.
  21. Anastasi A, Parato B, Spina F, Tigini V, Prigione V, Varese GCA. Decolourisation and detoxification in the fungal treatment of textile wastewaters from dyeing processes. New Biotechnol. 2011;29:38-45.
  22. Fletcher JS, Hegde RS. Release of phenols by perennial plant roots and their potential importance in bioremediation. Chemosphere 1995;31:3009-3016.
  23. Gopalakrishnan S, Watanabe T, Pearse SJ, Ito O, Hossain ZAKM, Subbarao GV. Biological nitrification inhibition by Brachiaria humidicola roots varies with soil type and inhibits nitrifying bacteria, but not other major soil microorganisms. Soil Sci. Plant Nutr. 2009;55:725-733.
  24. Chitindingu K, Ndhlala AR, Chapano C, Benhura MA, Muchuweti M. Phenolic compound content, profiles and antioxidant activities of Amaranthus hybrids (pigweed), Brachiaria brizantha (Upright Brachiaria) and Panicum maximum (Guinea grass). J. Food Biochem. 2007;31:206-216.
  25. Chavan BL, VP Dhulap. Sewage treatment with constructed wetland using Panicum maximum forage grass. J. Environ. Sci. Water Resour. 2012:1:223-230.
  26. Embrandiri A, Singh RP, Ibrahim HM, Ramli AA. Land application of biomass residue generated from palm oil processing: Its potential benefits and threats. Environmentalist 2011;32:111-117.
  27. Tosu P, Luepromchai E, Suttinun O. Activation and immobilization of phenol-degrading bacteria on oil palm residues for enhancing phenols degradation in treated palm oil mill effluent. Environ. Eng. Res. 2015;20:141-148.
  28. Justino C, Marques AG, Duarte KR, et al. Degradation of phenols in olive oil mill wastewater by biological, enzymatic, and photo-Fenton oxidation. Environ. Sci. Poll. Res. 2010;17:650-656.