Occurrence and control of N-nitrosodimethylamine in water engineering systems

  • Bian, Yongning (Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology) ;
  • Wang, Chuang (Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology) ;
  • Zhu, Guocheng (Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology) ;
  • Ren, Bozhi (Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology) ;
  • Zhang, Peng (College of Civil Engineering, Hunan University of Science and Technology) ;
  • Hursthouse, Andrew S. (Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology)
  • 투고 : 2018.01.09
  • 심사 : 2018.05.05
  • 발행 : 2019.03.31


N-nitrosodimethylamine (NDMA) is a typical nitrogen disinfection by-product, which has posed a potential threat to human health during drinking water disinfection. Because of the well-known effects of mutagenesis, carcinogenesis and teratogenesis, the high detection rate in water engineering systems (such as coagulation, membrane filtration and biological systems), and difficulty to remove, it has received wide concern in the field of water engineering systems. The NDMA is a low molecular weight hydrophilic organic substance, which is difficult to remove. Also, the mechanism for NDMA formation is also recognized to be complex, and many steps still needed to be further evaluated. Therefore, the mechanistic knowledge on NDMA formation potential and their removal processes is of particularly interest. Few papers summarize the occurrence and control of NDMA in water engineering systems. It is for this reason that the content of this paper is particularly important for us to understand and control the amount of NDMA thus reducing the threat of disinfection by-products to drinking water. Four parts including the mechanisms for the NDMA formation potential, the factors affecting the NDMA formation potential, the technologies for removal of NDMA are summarized. Finally, some definite suggestions are given.


연구 과제 주관 기관 : National Natural Science Foundation of China, Natural Science Foundation of Hunan Province of China, China Postdoctoral Science Foundation


  1. Chang Y, Chen Q, Li N, et al. Development tendency of drinking water disinfection based on a bibliometrics analysis. Acta Sci. Circum. 2016;36:413-419.
  2. Tokmak B, Capar G, Dilek FB, Yetis U. Trihalomethanes and associated potential cancer risks in the water supply in Ankara, Turkey. Environ. Res. 2004;96:345-352.
  3. Chu W, Chu T, Du E, Yang D, Guo Y, Gao N. Increased formation of halomethanes during chlorination of chloramphenicol in drinking water by UV irradiation, persulfate oxidation, and combined UV/persulfate pre-treatments. Ecotoxicol. Environ. Saf. 2016;124:147-154.
  4. Zhang TY, Lin YL, Xu B, et al. Identification and quantification of ineffective chlorine by $NaAsO_2$ selective quenching method during drinking water disinfection. Chem. Eng. J. 2015;277:295-302.
  5. Helbling DE, Vanbriesen JM. Free chlorine demand and cell survival of microbial suspensions. Water Res. 2007;41:4424-4434.
  6. Fu J, Lee W, Coleman C, Nowack K, Carter J, Huang CH. Removal of disinfection byproduct (DBP) precursors in water by two-stage biofiltration treatment. Water Res. 2017;123:224-235.
  7. Liu C, Olivares CI, Pinto AJ, et al. The control of disinfection byproducts and their precursors in biologically active filtration processes. Water Res. 2017;124:630-653.
  8. Zhang Y, Chu W, Yao D, Yin D. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity. J. Environ. Sci. 2017;58:322-330.
  9. Zhang Y, Chu W, Xu T, et al. Impact of pre-oxidation using $H_2O_2$ and ultraviolet/$H_2O_2$ on disinfection byproducts generated from chlor(am)ination of chloramphenicol. Chem. Eng. J. 2017;317:112-118.
  10. Zuo TH, Kristiana I, Busetti F, Linge KL, Joll CA. Organic chloramines in chlorine-based disinfected water systems: A critical review. J. Environ. Sci. 2017;58:2-18.
  11. Donnermair MM, Blatchley ER 3rd. Disinfection efficacy of organic chloramines. Water Res. 2003;37:1557-1570.
  12. Lee W, Westerhoff P. Formation of organic chloramines during water disinfection: Chlorination versus chloramination. Water Res. 2009;43:2233-2239.
  13. Shen R, Andrews SA. Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection. Water Res. 2011;45:944-952.
  14. Lyon BA, Dotson AD, Linden KG, Weinberg HS. The effect of inorganic precursors on disinfection byproduct formation during UV-chlorine/chloramine drinking water treatment. Water Res. 2012;46:4653-4664.
  15. Kanniganti R, Johnson JD, Ball LM, Charles MJ. Identification of compounds in mutagenic extracts of aqueous monochloraminated fulvic acid. Environ. Sci. Technol. 1992;26:1998-2004.
  16. Mitch WA, Sedlak DL. Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination. Environ. Sci. Technol. 2002;36:588-595.
  17. Choi J, Valentine RL. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: A new disinfection by-product. Water Res. 2002;36:817-824.
  18. Chu W, Gao N, Deng Y, Templeton MR, Yin D. Impacts of drinking water pretreatments on the formation of nitrogenous disinfection by-products. Bioresour. Technol. 2011;102:11161-11166.
  19. Xu B, Ye T, Li D, et al. Measurement of dissolved organic nitrogen in a drinking water treatment plant: Size fraction, fate, and relation to water quality parameters. Sci. Total Environ. 2011;409:1116-1122.
  20. Uzun H, Kim D, Karanfil T. Seasonal and temporal patterns of NDMA formation potentials in surface waters. Water Res. 2015;69:162-172.
  21. Zhang B, Xian Q, Gong T, Li Y, Li A, Feng J. DBPs formation and genotoxicity during chlorination of pyrimidines and purines bases. Chem. Eng. J. 2017;307:884-890.
  22. Tian F, Xu B, Lin Y, et al. Chlor(am)ination of iopamidol: Kinetics, pathways and disinfection by-products formation. Chemosphere 2017;184:489-497.
  23. Liu P, Farre MJ, Keller J, Gernjak W. Reducing natural organic matter and disinfection by-product precursors by alternating oxic and anoxic conditions during engineered short residence time riverbank filtration: A laboratory-scale column study. Sci. Total Environ. 2016;565:616-625.
  24. Meng Y, Wang M, Guo B, et al. Characterization and C-, N-disinfection byproduct formation of dissolved organic matter in MBR and anaerobic-anoxic-oxic (AAO) processes. Chem. Eng. J. 2017;315:243-250.
  25. Zhou S, Zhu S, Shao Y, Gao N. Characteristics of C-, N-DBPs formation from algal organic matter: Role of molecular weight fractions and impacts of pre-ozonation. Water Res. 2015;72:381-390.
  26. Goslan EH, Krasner SW, Bower M, et al. A comparison of disinfection by-products found in chlorinated and chloraminated drinking waters in Scotland. Water Res. 2009;43:4698-4706.
  27. Ersan MS, Ladner DA, Karanfil T. The control of N-nitrosodimethylamine, halonitromethane, and trihalomethane precursors by nanofiltration. Water Res. 2016;105:274-281.
  28. Brown JL. N-Nitrosamines. Occup. Med. 1999;14:839-848.
  29. Luo Q, Wang D, Wang Z. Occurrences of nitrosamines in chlorinated and chloraminated drinking water in three representative cities, China. Sci. Total Environ. 2012;437:219-225.
  30. Souliotis VL, Henneman JR, Reed CD, et al. DNA adducts and liver DNA replication in rats during chronic exposure to N-nitrosodimethylamine (NDMA) and their relationships to the dose-dependence of NDMA hepatocarcinogenesis. Mutat. Res. Fund. Mol. M. 2002;500:75-87.
  31. Charrois JWA, Arend MW, Froese KL, Hrudey SE. Detecting N-nitrosamines in drinking water at nanogram per liter levels using ammonia positive chemical ionization. Environ. Sci. Technol. 2004;38:4835-4841.
  32. Wang W, Hu J, Yu J, Yang M. Determination of N-nitrosodimethylamine in drinking water by UPLC-MS/MS. J. Environ. Sci. 2010;22:1508-1512.
  33. Liang C, Xu B, Xian SJ, Gao NY, Li DP, Tian FX. Detection of trace NDMA in drinking water by SPE/LC/MS/MS. China Water Wastewater 2009;25:82-85.
  34. Mitch WA, Sharp JO, Trussell RR, Valentine RL, Alvarez-Cohen L, Sedlak DL. N-nitrosodimethylamine (NDMA) as a drinking water contaminant: A review. Environ. Eng. Sci. 2003;20:389-404.
  35. Chu WH, Gao NY, Yang D. Classification and toxicological evaluation of newfound nitrogenous disinfection byproducts (N-DBPs) in drinking water. Modern Chem. Ind. 2009; 29:86-89.
  36. Zhao YY, Boyd J, Hrudey SE, Li XF. Characterization of new nitrosamines in drinking water using liquid chromatography tandem mass spectrometry. Environ. Sci. Technol. 2006;40:7636-7641.
  37. Li T, Xian Q, Sun C, Li A. The level and analysis of N-nitrosamines in waters. Environ. Chem. 2012;31:1767-1774.
  38. Planas C, Palacios O, Ventura F, Rivera J, Caixach J. Analysis of nitrosamines in water by automated SPE and isotope dilution GC/HRMS: Occurrence in the different steps of a drinking water treatment plant, and in chlorinated samples from a reservoir and a sewage treatment plant effluent. Talanta 2008;76:906-913.
  39. Gerecke AC, Sedlak DL. Precursors of N-nitrosodimethylamine in natural waters. Environ. Sci. Technol. 2003;37:1331-1336.
  40. Chen ZL, Yin SZ, Yang L, Liu T, Xu BB. N-nitrosodimethylamine: A new disinfection by-product in water. China Water Wastewater 2007;23:6-11.
  41. He Y, Cheng H. Degradation of N-nitrosodimethylamine (NDMA) and its precursor dimethylamine (DMA) in mineral micropores induced by microwave irradiation. Water Res. 2016;94:305-314.
  42. Zeng T, Mitch WA. Contribution of N-nitrosamines and their precursors to domestic sewage by greywaters and blackwaters. Environ. Sci. Technol. 2015;49:13158-13167.
  43. Krauss M, Longree P, Houtte EV, Cauwenberghs J, Hollender J. Assessing the fate of nitrosamine precursors in wastewater treatment by physicochemical fractionation. Environ. Sci. Technol. 2010;44:7871-7877.
  44. Mamo J, Insa S, Monclus H, et al. Fate of NDMA precursors through an MBR-NF pilot plant for urban wastewater reclamation and the effect of changing aeration conditions. Water Res. 2016;102:383-393.
  45. Wenhai C, Naiyun G. Formation and removal of nitrogenous disinfection by-products NDMA in drinking water. Acta Chim. Sinica 2009;72:388-393.
  46. Lu C, Liu Y, Wang Y, Zhong R. Theoretical studies on the N-nitrosodimethylamine formation from dimethylamine and nitrous acid. Acta Chim. Sinica 2007;65:1568-1572.
  47. Chen ZL, Xu BB, Qi H, et al. Determination of trace nitrosodimethylamine in water by high performance liquid chromatogram. China Water Wastewater 2007;23:84-87.
  48. Sun Z, Liu YD, Zhong RG. Theoretical investigation of N-nitrosodimethylamine formation from nitrosation of trimethylamine. J. Phys. Chem. A 2010;114:455-465.
  49. Choi J, Valentine RL. N-nitrosodimethylamine formation by free-chlorine-enhanced nitrosation of dimethylamine. Environ. Sci. Technol. 2003;37:4871-4876.
  50. Andrzejewski P, Kasprzykhordern B, Nawrocki J. N-nitrosodimethylamine (NDMA) formation during ozonation of dimethylamine-containing waters. Water Res. 2008;42:863-870.
  51. Choi J, Valentine RL. A kinetic model of N-nitrosodimethylamine (NDMA) formation during water chlorination/chloramination. Water Sci. Technol. 2002;46:65-71.
  52. Zhang QQ, Pan SL, Zhang Y, Yang M, An W. Estimation of health risk and enaction of safety standards of N-nitrosodimethylamine (NDMA) in drinking waters in China. Environ. Sci. 2017;38:2747-2753.
  53. Haiyan W, Xiuquan S, Ming Q, et al. The exposure level of nitrosamines disinfection by-products in drinking water of China: A Meta analysis. J. Zunyi Med. Univ. 2017;40:278-284.
  54. Yang L, Chen Z, Shen J, et al. Reinvestigation of the nitrosamine-formation mechanism during ozonation. Environ. Sci. Technol. 2009;43:5481-5487.
  55. Schreiber IM, Mitch WA. Influence of the order of reagent addition on NDMA formation during chloramination. Environ. Sci. Technol. 2005;39:3811-3818.
  56. Schreiber IM, Mitch WA. Nitrosamine formation pathway revisited: The importance of chloramine speciation and dissolved oxygen. Environ. Sci. Technol. 2006;40:6007-6014.
  57. Park SH, Padhye LP, Wang P, Cho M, Kim JH, Huang CH. N-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: Effects of in situ chloramination, breakpoint chlorination, and pre-oxidation. J. Hazard. Mater. 2015;282:133-140.
  58. Roux JL, Gallard H, Croue JP. Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation. Water Res. 2011;45:3164-3174.
  59. Lee H, Lee E, Lee CH, Lee K. Degradation of chlorotetracycline and bacterial disinfection in livestock wastewater by ozone-based advanced oxidation. J. Ind. Eng. Chem. 2011;17:468-473.
  60. Gerrity D, Gamage S, Holady JC, et al. Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection. Water Res. 2011;45:2155-2165.
  61. Silva GHR, Daniel LA, Bruning H, Rulkens WH. Anaerobic effluent disinfection using ozone: Byproducts formation. Bioresour. Technol. 2010;101:6992-6997.
  62. Jung YJ, Oh BS, Kang JW. Synergistic effect of sequential or combined use of ozone and UV radiation for the disinfection of Bacillus subtilis spores. Water Res. 2008;42:1613-1621.
  63. Kitazaki S, Tanaka A, Hayashi N. Sterilization of narrow tube inner surface using discharge plasma, ozone, and UV light irradiation. Vacuum 2014;110:217-220.
  64. Zhou XJ, Guo WQ, Yang SS, Zheng HS, Ren NQ. Ultrasonic-assisted ozone oxidation process of triphenylmethane dye degradation: Evidence for the promotion effects of ultrasonic on malachite green decolorization and degradation mechanism. Bioresour. Technol. 2013;128:827-830.
  65. Cardoso JC, Bessegato GG, Zanoni MVB. Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water Res. 2016;98:39-46.
  66. Turhan K, Durukan I, Ozturkcan SA, Turgut Z. Decolorization of textile basic dye in aqueous solution by ozone. Dyes Pigm. 2012;92:897-901.
  67. Ham JE, Wells JR. Surface chemistry of a pine-oil cleaner and other terpene mixtures with ozone on vinyl flooring tiles. Chemosphere 2011;83:327-333.
  68. Oya M, Kosaka K, Asami M, Kunikane S. Formation of N-nitrosodimethylamine (NDMA) by ozonation of dyes and related compounds. Chemosphere 2008;73:1724-1730.
  69. Duffy EF, Touati FA, Kehoe SC, et al. A novel $TiO_2$-assisted solar photocatalytic batch-process disinfection reactor for the treatment of biological and chemical contaminants in domestic drinking water in developing countries. Solar Energ. 2004;77:649-655.
  70. Zhao YY, Boyd JM, Woodbeck M, et al. Formation of N-nitrosamines from eleven disinfection treatments of seven different surface waters. Environ. Sci. Technol. 2008;42:4857-4862.
  71. Zhang A, Li Y, Song Y, Lv J, Yang J. Characterization of pharmaceuticals and personal care products as N-nitrosodimethylamine precursors during disinfection processes using free chlorine and chlorine dioxide. J. Hazard. Mater. 2014;276:499-509.
  72. Mitch WA, Gerecke AC, Sedlak DL. A N-nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater. Water Res. 2003;37:3733-3741.
  73. Chen WH, Young TM. NDMA formation during chlorination and chloramination of aqueous diuron solutions. Environ. Sci. Technol. 2008;42:1072-1077.
  74. Charrois JW, Hrudey SE. Breakpoint chlorination and free-chlorine contact time: Implications for drinking water N-nitrosodimethylamine concentrations. Water Res. 2007;41:674-682.
  75. Farre MJ, Doderer K, Hearn L, Poussade Y, Keller J, Gernjak W. Understanding the operational parameters affecting NDMA formation at advanced water treatment plants. J. Hazard. Mater. 2011;185:1575-1581.
  76. Changha L, Carsten S, Jeyong Y. Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: Kinetics and effect on NDMA formation potential. Environ. Sci. Technol. 2007;41:2056-2063.
  77. Seid MG, Cho K, Lee C, Park HM, Hong SW. Nitrite ion mitigates the formation of N-nitrosodimethylamine (NDMA) during chloramination of ranitidine. Sci. Total Environ. 2018;633:352-359.
  78. Selbes M, Kim D, Karanfil T. The effect of pre-oxidation on NDMA formation and the influence of pH. Water Res. 2014;66:169-179.
  79. Shen R, Andrews SA. Formation of NDMA from ranitidine and sumatriptan: The role of pH. Water Res. 2013;47:802-810.
  80. Hatt JW, Lamy C, Germain E, Tupper M, Judd SJ. NDMA formation in secondary wastewater effluent. Chemosphere 2013;91:83-87.
  81. Andrzejewski P, Nawrocki J. N-nitrosodimethylamine formation during treatment with strong oxidants of dimethylamine containing water. Water Sci. Technol. 2007;56:125-131.
  82. Andrzejewski P, Kasprzyk-Hordern B, Nawrocki J. The hazard of N-nitrosodimethylamine (NDMA) formation during water disinfection with strong oxidants. Desalination 2005;176:37-45.
  83. Chen Z, Valentine RL. Modeling the formation of N-nitrosodimethylamine (NDMA) from the reaction of natural organic matter (NOM) with monochloramine. Environ. Sci. Technol. 2006;40:7290-7297.
  84. Lv J, Wang L, Song Y, Li Y. N-nitrosodimethylamine formation from ozonation of chlorpheniramine: Influencing factors and transformation mechanism. J. Hazard. Mater. 2015;299:584-594.
  85. Marti EJ, Pisarenko AN, Peller JR, Dickenson ER. N-nitrosodimethylamine (NDMA) formation from the ozonation of model compounds. Water Res. 2015;72:262-270.
  86. Sgroi M, Roccaro P, Oelker GL, Snyder SA. N-nitrosodimethylamine (NDMA) formation at an indirect potable reuse facility. Water Res. 2015;70:174-183.
  87. Sgroi M, Roccaro P, Oelker G, Snyder SA. N-nitrosodimethylamine (NDMA) formation during ozonation of wastewater and water treatment polymers. Chemosphere 2016;144:1618-1623.
  88. Lim S, Lee W, Na S, Shin J, Lee Y. N-nitrosodimethylamine (NDMA) formation during ozonation of N,N-dimethylhydrazine compounds: Reaction kinetics, mechanisms, and implications for NDMA formation control. Water Res. 2016;105:119-128.
  89. Hu H, Jiang C, Ma H, et al. Removal characteristics of DON in pharmaceutical wastewater and its influence on the N-nitrosodimethylamine formation potential and acute toxicity of DOM. Water Res. 2017;109:114-121.
  90. Boyd JM, Hrudey SE, Li XF, Richardson SD. Solid-phase extraction and high-performance liquid chromatography mass spectrometry analysis of nitrosamines in treated drinking water and wastewater. TrAC Trend. Anal. Chem. 2011;30:1410-1421.
  91. Kemper JM, Walse SS, Mitch WA. Quaternary amines as nitrosamine precursors: A role for consumer products? Environ. Sci. Technol. 2010;44:1224-1231.
  92. Liu C, Olivares CI, Pinto AJ, et al. The control of disinfection byproducts and their precursors in biologically active filtration processes. Water Res. 2017;124:630-653.
  93. Song Y, Breider F, Ma J, von Gunten U. Nitrate formation during ozonation as a surrogate parameter for abatement of micropollutants and the N-nitrosodimethylamine (NDMA) formation potential. Water Res. 2017;122:246-257.
  94. Mitch WA, Sedlak DL. Factors controlling nitrosamine formation during wastewater chlorination. Water Sci. Technol. Water Supply 2002;2:191-198.
  95. Wilczak A, Assadi-Rad A, Lai HH, et al. Formation of NDMA in chloraminated water coagulated with DADMAC cationic polymer. J. Am. Water Works Assoc. 2003;95:94-106.
  96. Shen R, Andrews SA. Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection. Water Res. 2011;45:944-952.
  97. Mitch WA, Sedlak DL. Characterization and fate of N-nitrosodimethylamine precursors in municipal wastewater treatment plants. Environ. Sci. Technol. 2004;38:1445-1454.
  98. Chen Z, Valentine RL. Formation of N-nitrosodimethylamine (NDMA) from humic substances in natural water. Environ. Sci. Technol. 2007;41:6059-6065.
  99. Li L, Gao N, Deng Y, Yao J, Zhang K. Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystis aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds. Water Res. 2012;46:1233-1240.
  100. Ma C, Pei H, Hu W, Wang Y, Xu H, Jin Y. The enhanced reduction of C- and N-DBP formation in treatment of source water containing Microcystis aeruginosa using a novel CTSAC composite coagulant. Sci. Total Environ. 2017;579:1170-1178.
  101. Zhang H, Andrews SA. Factors affecting catalysis of copper corrosion products in NDMA formation from DMA in simulated premise plumbing. Chemosphere 2013;93:2683-2689.
  102. Gan X, Karanfil T, Kaplan Bekaroglu SS, Shan J. The control of N-DBP and C-DBP precursors with $MIEX^{(R)}$. Water Res. 2013;47:1344-1352.
  103. Luo XH, Clevenger TE, Deng BL. Role of NOM in the formation of N-nitrosodimethylamine (NDMA) in surface waters. In: Abstracts of papers of the American chemical society. 1155 16th st, NW, Washington D.C. 20036 USA: Amer Chemical Soc; 2005. p. U848-U848.
  104. Pehlivanoglu-Mantas E, Sedlak DL. Measurement of dissolved organic nitrogen forms in wastewater effluents: Concentrations, size distribution and NDMA formation potential. Water Res. 2008;42:3890-3898.
  105. Lee W, Westerhoff P, Croue JP. Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, N-nitrosodimethylamine, and trichloronitromethane. Environ. Sci. Technol. 2007;41:5485-5490.
  106. Pehlivanoglu-Mantas E, Hawley EL, Deeb RA, Sedlack DL. Formation of nitrosodimethylamine (NDMA) during chlorine disinfection of wastewater effluents prior to use in irrigation systems. Water Res. 2006;40:341-347.
  107. Hu H, Ma H, Ding L, et al. Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: A comparative study. Sci. Total Environ. 2016;569-570:1359-1368.
  108. Bazri MM, Martijn B, Kroesbergen J, Mohseni M. Impact of anionic ion exchange resins on NOM fractions: Effect on N-DBPs and C-DBPs precursors. Chemosphere 2016;144:1988-1995.
  109. Zhang H, Zhang K, Jin H, Gu L, Yu X. Variations in dissolved organic nitrogen concentration in biofilters with different media during drinking water treatment. Chemosphere 2015;139:652-658.
  110. Michael-Kordatou I, Michael C, Duan X, et al. Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications. Water Res. 2015;77:213-248.
  111. Lee W, Westerhoff P, Esparza-Soto M. Occurrence and removal of dissolved organic nitrogen in US water treatment plants. J. Am. Water Works Assoc. 2006;98:102-110.
  112. Qiao CG, Wei QS, Wang D, Yang M, Wei Q, Li MJ. Molecular weight distribution and removal characters of DOM in the typical source water in south of China. Acta Sci. Circum. 2007;27:195-200.
  113. Acero JL, Real FJ, Benitez FJ, Gonzalez M. Kinetics of reactions between chlorine or bromine and the herbicides diuron and isoproturon. J. Chem. Technol. Biotechnol. 2007;82:214-222.
  114. Mascolo G, Lopez A, James H, Fielding M. By-products formation during degradation of isoproturon in aqueous solution. II: Chlorination. Water Res. 2001;35:1705-1713.
  115. Fuxiang T, Bin X, Lang Q, et al. Influence of bromide ions upon chlorination characteristics of chlortoluron as precursor of NDMA. J. Tongji Univ. 2014;42:272-277.
  116. von Gunten U, Salhi E, Schmidt CK, Arnold WA. Kinetics and mechanisms of N-nitrosodimethylamine formation upon ozonation of N,N-dimethylsulfamide-containing waters: Bromide catalysis. Environ. Sci. Technol. 2010;44:5762-5768.
  117. Padhye L, Wang P, Karanfil T, Huang CH. Unexpected role of activated carbon in promoting transformation of secondary amines to N-nitrosamines. Environ. Sci. Technol. 2010;44:4161-4168.
  118. Kodamatani H, Lwaya Y, Saga M, et al. Ultra-sensitive HPLC-photochemical reaction-luminol chemiluminescence method for the measurement of secondary amines after nitrosation. Anal. Chim. Acta 2017;952:50-58.
  119. Farre MJ, Insa S, Mamo J, Barcelo D. Determination of 15 N-nitrosodimethylamine precursors in different water matrices by automated on-line solid-phase extraction ultra-high-performance-liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2016;1458:99-111.
  120. Herrmann SS, Granby K, Duedahl-Olesen L. Formation and mitigation of N-nitrosamines in nitrite preserved cooked sausages. Food Chem. 2015;174:516-526.
  121. Farajzadeh MA, Abbaspour M. Development of a new sample preparation method based on liquid-liquid-liquid extraction combined with dispersive liquid-liquid microextraction and its application on unfiltered samples containing high content of solids. Talanta 2017;174:111-121.
  122. Farajzadeh MA, Yadeghari A, Khoshmaram L. Combination of dispersive solid phase extraction and dispersive liquid- liquid microextraction for extraction of some aryloxy pesticides prior to their determination by gas chromatography. Microchem. J. 2017;131:182-191.
  123. Wen Hai C, Nai Yun G, Shigu Z. Advance in analytical techniques of disinfection by-products NDMA in drinking water. Chem. Ind. Eng. Prog. 2008;27:1512-1515.
  124. Kosaka K, Asami M, Konno Y, Oya M, Kunikane S. Identification of antiyellowing agents as precursors of N-nitrosodimethylamine production on ozonation from sewage treatment plant influent. Environ. Sci. Technol. 2009;43:5236-5241.
  125. Grebel JE, Young CC, Suffet IH. Solid-phase microextraction of N-nitrosamines. J. Chromatogr. A 2006;1117:11-18.
  126. Zhao YY, Boyd J, Hrudey SE, Li XF. Characterization of new nitrosamines in drinking water using liquid chromatography tandem mass spectrometry. Environ. Sci. Technol. 2006;40:7636-7641.
  127. Krauss M, Hollender J. Analysis of nitrosamines in wastewater: Exploring the trace level quantification capabilities of a hybrid linear ion trap/orbitrap mass spectrometer. Anal. Chem. 2008;80:834-842.
  128. Qiu Ju Z, Zu Peng G, Ming Zu L. Determination of seven N-nitrosamine compounds by HS-SPME-GC-MS. Chinese J. Health Lab. Technol. 2009;19:1234-1236.
  129. Fine DH, Rounbehler DP, Rounbehler A, et al. Determination of dimethylnitrosamine in air, water, and soil by thermal energy analysis: Measurements in Baltimore, Md. Environ. Sci. Technol. 1977;11:581-584.
  130. Lee C, Lee Y, Schmidt C, Yoon J, Von Gunten U. Oxidation of suspected N-nitrosodimethylamine (NDMA) precursors by ferrate (VI): Kinetics and effect on the NDMA formation potential of natural waters. Water Res. 2008;42:433-441.
  131. Chung J, Ahn CH, Chen Z, Rittmann BE. Bio-reduction of N-nitrosodimethylamine (NDMA) using a hydrogen-based membrane biofilm reactor. Chemosphere 2008;70:516-520.
  132. Plumlee MH, Reinhard M. Photochemical attenuation of N-nitrosodimethylamine (NDMA) and other nitrosamines in surface water. Environ. Sci. Technol. 2007;41:6170-6176.
  133. Hanigan D, Ferrer I, Thurman EM, Herckes P, Westerhoff P. LC/QTOF-MS fragmentation of N-nitrosodimethylamine precursors in drinking water supplies is predictable and aids their identification. J. Hazard. Mater. 2017;323:18-25.
  134. Hong Y, Kim KH, Sang BI, Kim H. Simple quantification method for N-nitrosamines in atmospheric particulates based on facile pretreatment and GC-MS/MS. Environ. Pollut. 2017;226:324-334.
  135. Fujioka T, Takeuchi H, Tanaka H, Nghiem LD, Ishida KP, Kodamatani H. A rapid and reliable technique for N-nitrosodimethylamine analysis in reclaimed water by HPLC-photochemical reaction-chemiluminescence. Chemosphere 2016;161:104-111.
  136. Hu CW, Shih YM, Liu HH, Chiang YC, Chen CM, Chao MR. Elevated urinary levels of carcinogenic N-nitrosamines in patients with urinary tract infections measured by isotope dilution online SPE LC-MS/MS. J. Hazard. Mater. 2016;310:207-216.
  137. Kodamatani H, Yamasaki H, Sakaguchi T, et al. Rapid method for monitoring N-nitrosodimethylamine in drinking water at the ng/L level without pre-concentration using high-performance liquid chromatography-chemiluminescence detection. J. Chromatogr. A 2016;1460:202-206.
  138. Wang C, Zhang X, Wang J, Chen C. Characterization of dissolved organic matter as N-nitrosamine precursors based on hydrophobicity, molecular weight and fluorescence. J. Environ. Sci. 2013;25:85-95.
  139. Lu C, Li S, Gong S, Yuan S, Yu X. Mixing regime as a key factor to determine DON formation in drinking water biological treatment. Chemosphere 2015;139:638-643.
  140. Liu B, Gu L, Yu X, Yu G, Zhang H, Xu J. Dissolved organic nitrogen (DON) profile during backwashing cycle of drinking water biofiltration. Sci. Total Environ. 2012;414:508-514.
  141. Xu B, Li DP, Li W, et al. Measurements of dissolved organic nitrogen (DON) in water samples with nanofiltration pretreatment. Water Res. 2010;44:5376-5384.
  142. Lee S, Lueptow RM. Toward a reverse osmosis membrane system for recycling space mission wastewater. Life Support Biosph. Sci. 2000;7:251-261.
  143. Hu H, Ding L, Geng J, Huang H, Xu K, Ren H. Effect of coagulation on dissolved organic nitrogen (DON) bioavailability in municipal wastewater effluents. J. Environ. Chem. Eng. 2016;4:2536-2544.
  144. Zhu G, Wang Q, Yin J, et al. Toward a better understanding of coagulation for dissolved organic nitrogen using polymeric zinc-iron-phosphate coagulant. Water Res. 2016;100:201-210.
  145. Arnaldos M, Pagilla K. Effluent dissolved organic nitrogen and dissolved phosphorus removal by enhanced coagulation and microfiltration. Water Res. 2010;44:5306-5315.
  146. Lee W, Westerhoff P. Dissolved organic nitrogen removal during water treatment by aluminum sulfate and cationic polymer coagulation. Water Res. 2006;40:3767-3774.
  147. Wei LI, Bin XU, Xia SJ, et al. Characteristics of DON and NDMA formation potential in water treatment. China Water Wastewater 2009;25:35-38.
  148. Tomaszewska M, Mozia S. Removal of organic matter from water by PAC/UF system. Water Res. 2002;36:4137-4143.
  149. Yoon Y, Lueptow RM. Removal of organic contaminants by RO and NF membranes. J. Membrane Sci. 2005;261:76-86.
  150. Lee S, Lueptow RM. Reverse osmosis filtration for space mission wastewater: Membrane properties and operating conditions. J. Membrane Sci. 2001;182:77-90.
  151. Charrois JWA, Hrudey SE. Breakpoint chlorination and free-chlorine contact time: Implications for drinking water N-nitrosodimethylamine concentrations. Water Res. 2007;41:674-682.
  152. Ventanas S, Ruiz J. On-site analysis of volatile nitrosamines in food model systems by solid-phase microextraction coupled to a direct extraction device. Talanta 2006;70:1017-1023.
  153. Yoon S, Nakada N, Tanaka H. Occurrence and removal of NDMA and NDMA formation potential in wastewater treatment plants. J. Hazard. Mater. 2011;190:897-902.
  154. Chen HW, Chen CY, Wang GS. Performance evaluation of the UV/$H_2O_2$ process on selected nitrogenous organic compounds: Reductions of organic contents vs. corresponding C-, N-DBPs formations. Chemosphere 2011;85:591-597.
  155. Kommineni S, Ela WP, Arnold RG, Huling SG, Hester BJ, Betterton EA. NDMA treatment by sequential GAC adsorption and Fenton-driven destruction. Environ. Eng. Sci. 2003;20:361-373.
  156. Dai XD, Bao XC, Zhu YJ, et al. Removal of N-nitrosodimethylamine from water by modified activated carbons. Carbon Tech. 2010;29:11-15.
  157. Plumlee MH, Lopez-Mesas M, Heidlberger A, Ishida KP, Reinhard M. N-nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment and analysis via LC-MS/MS. Water Res. 2007;42:347-355.
  158. Steinle-Darling E, Zedda M, Plumlee MH, Ridgway HF, Reinhard M. Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA. Water Res. 2007;41:3959-3967.
  159. Stefan MI, Bolton JR. UV direct photolysis of N-nitrosodimethylamine (NDMA): Kinetic and product study. Helv. Chim. Acta 2015;85:1416-1426.
  160. Swaim P, Royce A, Smith T, Maloney T, Ehlen D, Carter B. Effectiveness of UV advanced oxidation for destruction of micro-pollutants. Ozone Sci. Eng. 2008;30:34-42.
  161. Kwon BG, Kim JO, Namkung KC. The formation of reactive species having hydroxyl radical-like reactivity from UV photolysis of N-nitrosodimethylamine (NDMA): Kinetics and mechanism. Sci. Total Environ. 2012;437:237-244.
  162. Lee M, Lee Y, Soltermann F, von Gunten U. Analysis of N-nitrosamines and other nitro(so) compounds in water by high-performance liquid chromatography with post-column UV photolysis/Griess reaction. Water Res. 2013;47:4893-4903.
  163. Sun Z, Zhang C, Zhao X, Chen J, Zhou Q. Efficient photo-reductive decomposition of N-nitrosodimethylamine by UV/iodide process. J. Hazard. Mater. 2016;329:185-192.
  164. Lee C, Choi W, Kim YG, Yoon J. UV photolytic mechanism of N-nitrosodimethylamine in water: Dual pathways to methylamine versus dimethylamine. Environ. Sci. Technol. 2005;39:2101-2106.
  165. Lee C, Choi W, Yoon J. UV photolytic mechanism of N-nitrosodimethylamine in water: Roles of dissolved oxygen and solution pH. Environ. Sci. Technol. 2005;39:9702-9709.
  166. Sharpless CM, Linden KG. Experimental and model comparisons of low- and medium-pressure Hg lamps for the direct and $H_2O_2$ assisted UV photodegradation of N-nitrosodimethylamine in simulated drinking water. Environ. Sci. Technol. 2003;37:1933-1940.
  167. Xu BB, Chen ZL, Qi F, Ma J. Efficiency of photodecomposition of trace NDMA in water by UV irradiation. Environ. Sci. 2008;29:1908-1913.
  168. Fan L, Yang X, Chen S, et al. Influence of light and temperature on degradation of N-nitrosodimethylamine and N-nitrosodiethylamine. South China Fish. Sci. 2009;5:53-58.
  169. Legrini O, Oliveros E, Braun AM. Photochemical processes for water treatment. Chem. Rev. 1993;93:671-698.
  170. Hiramoto K, Ryuno Y, Kikugawa K. Decomposition of N-nitrosamines, and concomitant release of nitric oxide by Fenton reagent under physiological conditions. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2002;520:103-111.
  171. Lee C, Yoon J, Von Gunten U. Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide. Water Res. 2006;41:581-590.
  172. Huang LX, Shen JM, Xu BB, Chen ZL. Study on photodegradation of NDMA using UV/$H_2O_2$ process. China Water Wastewater 2010;26:104-108.
  173. Xu BB, Chen ZL, Qi F, Yang L, Huang LX. Control on products of NDMA degradation by UV/$O_3$. Huanjing Kexue 2008;29:3421-3427.
  174. Liang S, Min JH, Davis MK, Greenn JF, Remer DS. Use of pulsed-UV processes to destroy NDMA. J. Am. Water Works Assoc. 2003;95:121-131.
  175. Frierdich AJ, Shapley JR, Strathmann TJ. Rapid reduction of N-nitrosamine disinfection byproducts in water with hydrogen and porous nickel catalysts. Environ. Sci. Technol. 2008;42:262-269.
  176. Gui L, Gillham RW, Odziemkowski MS. Reduction of N-nitrosodimethylamine with granular iron and nickel-enhanced iron. 1. Pathways and kinetics. Environ. Sci. Technol. 2000;34:3489-3494.
  177. Odziemkowski MS, Gui L, Gillham RW. Reduction of N-nitrosodimethylamine with granular iron and nickel-enhanced iron. 2. Mechanistic studies. Environ. Sci. Technol. 2000;34:3495-3500.
  178. Davie MG, Reinhard M, Shapley JR. Metal-catalyzed reduction of N-nitrosodimethylamine with hydrogen in water. Environ. Sci. Technol. 2006;40:7329-7335.
  179. Davie MG, Shih K, Pacheco FA, Leckie JO, Reinhard M. Palladium-indium catalyzed reduction of N-nitrosodimethylamine: Indium as a promoter metal. Environ. Sci. Technol. 2008;42:3040-3046.
  180. Yang WC, Gan J, Liu WP, Green R. Degradation of N-nitrosodimethylamine (NDMA) in landscape soils. J. Environ. Qual. 2005;34:336-341.
  181. Mallik MA, Tesfai K. Transformation of nitrosamines in soil and in vitro by soil microorganisms. Bull. Environ. Contam. Toxicol. 1981;27:115-121.
  182. Zhou Q, Mccraven S, Garcia J, Gasca M, Johnson TA, Motzer WE. Field evidence of biodegradation of N-nitrosodimethylamine (NDMA) in groundwater with incidental and active recycled water recharge. Water Res. 2009;43:793-805.
  183. Sharp JO, Wood TK, Alvarezcohen L. Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains. Biotechnol. Bioeng. 2005;89:608-618.
  184. Yifru DD, Nzengung VA. Uptake of N-nitrosodimethylamine (NDMA) from water by phreatophytes in the absence and presence of perchlorate as a co-contaminant. Environ. Sci. Technol. 2006;40:7374-7380.