Estimation of Mega Flood Using Mega Rainfall Scenario

거대강우 시나리오를 이용한 거대홍수량 산정

  • Han, Daegun (Department of Civil Engineering, Inha university) ;
  • Kim, Deokhwan (Department of land, Water and Environment Research Korea institute of Civil Engineering and Building Technology(KICT)) ;
  • Kim, Jungwook (Department of Civil Engineering, Inha university) ;
  • Jung, Jeawon (Department of Civil Engineering, Inha university) ;
  • Lee, Jongso (Korea Research Institute for Human Settlements) ;
  • Kim, Hung Soo (Department of Civil Engineering, Inha university)
  • 한대건 (인하대학교 토목공학과) ;
  • 김덕환 (한국건설기술연구원 국토보전연구본부) ;
  • 김정욱 (인하대학교 토목공학과) ;
  • 정재원 (인하대학교 토목공학과) ;
  • 이종소 (국토연구원 도시연구본부) ;
  • 김형수 (인하대학교 토목공학과)
  • Received : 2019.10.11
  • Accepted : 2019.12.01
  • Published : 2019.12.30


In recent years, flood due to the consecutive storm events have been occurred and property damage and casualties are in increasing trend. This study calls the consecutively occurred storm events as a mega rainfall scenario and the discharge by the scenario is defined as a mega flood discharge. A mega rainfall scenario was created on the assumption that 100-year frequency rainfall events were consecutively occurred in the Gyeongancheon stream basin. The SSARR (Streamflow Synthesis and Reservoir Regulation) model was used to estimate the mega flood discharge using the scenario in the basin. In addition, in order to perform more reasonable runoff analysis, the parameters were estimated using the SCE_UA algorithm. Also, the calibration and verification were performed using the objective functions of the weighted sum of squared of residual(WSSR), which is advantageous for the peak discharge simulation and sum of squared of residual(SSR). As a result, the mega flood discharge due to the continuous occurrence of 100-year frequency rainfall events in the Gyeongan Stream Basin was estimated to be 4,802㎥/s, and the flood discharge due to the 100-year frequency single rainfall event estimated by "the Master Plan for the Gyeongancheon Stream Improvement" (2011) was 3,810㎥/s. Therefore, the mega flood discharge was found to increase about 992㎥/s more than the single flood event. The results of this study can be used as a basic data for Comprehensive Flood Control Plan of the Gyeongan Stream basin.

최근 연속적인 호우사상으로 인해 홍수가 발생하고 있으며, 이로 인한 재산 및 인명피해가 증가하고 있다. 따라서 본 연구에서는 연속적인 호우사상 발생 사례를 바탕으로 거대강우 시나리오와 거대홍수를 정의하였다. 경안천 유역의 100년 빈도 확률강우사상이 연속적으로 발생한다는 가정하에 거대강우 시나리오를 생성하였으며, 거대홍수량을 산정하기 위하여 SSARR(Streamflow Synthesis and Reservoir Regulation)모형을 이용하였다. 또한, 보다 합리적인 유출해석을 수행하기 위하여 SCE_UA기법을 통해 매개변수를 추정하고, SSR(Sum of Squared of Residual)과 첨두유량 모의에 유리한 WSSR(Weighted Sum of Squared of Residual)의 목적함수를 이용하여 모형의 보정 및 검증을 수행하였다. 이를 통해 적합성 검토를 수행하였다. 그 결과, 경안천 유역의 100년 빈도 강우사상의 연속발생으로 인한 거대홍수량은 4,802㎥/s로 산정되었고, 경안천하천정비기본계획(2011)에서 산정한 100년 빈도 단일 강우사상에 의한 홍수량은 3,810㎥/s으로 산정되었다. 따라서 거대홍수량이 단일 호우사상에 의한 홍수량 보다 약 992㎥/s 만큼 증가하는 것으로 확인되었으며, 이는 향후 거대홍수를 고려할 경우, 경안천 유역의 치수방어대책 수립시 참고자료로 활용할 수 있을 것으로 기대된다.



Supported by : 한국환경산업기술원

본 연구는 환경부/한국환경산업기술원의 지원으로 수행되었음. (83067)


  1. Adams, B. J. and Papa, F. (2000). Urban Storm water Management Planning with Analytical Probabilistic Models, John Wiley and Sons, New York, NY.
  2. Chen, H. W and Chang, N. B. (2006). Decision Support for Allocation of Watershed Pollution Load Using Gery Fuzzy Multi objective Programming, J. of the American Water Resources Association, 42(3), pp. 725-745.
  3. Chen, R. S., Pi, L. C., Hsieh, C. C. (2005). Application of Parameter Optimization Method for Calibrating Tank Model, J. of the American Water Resources Association, 41(2), pp. 389-402.
  4. Chen, Y., Xu, H. (2016). Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization. Hydrol & Earth System Sciences Discussions. 12(10)
  5. Cheng, C. T., Ou, C. P., Chau, K. W. (2002). Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration, J. of Hydrology, 268(1-4), pp. 72-86.
  6. Chung, GH., Park, HS., Sung, JY., and Kim, HJ. (2012). Determination and evaluation of optimal parameters in storagefunction method using SCE-UA, J. of Korea Water Resources Association, 45(11), pp. 1169-1186. [Korean Literature]
  7. Gang, TU and Lee, SH(2014), Development on an automatic calibration module of the SWMM for watershed runoff simulation and water quality simulation, J. of Korea Water Resources Association, 47(4), pp. 343-356. [Korean Literature]
  8. Huo, J., Zhang, Y., Luo, L., Long, Y., He, Z. (2017). Model parameter optimization method research in Heihe River open modeling environment, J. of Pattern Recognition and Artificial Intelligence, 31, pp. 31-53.
  9. Kim, DH. (2018). Development of Consecutive Storm Event Based Rainfall-Runoff model for Short Term Flood Runoff Simulation and Applicability of the Model under Climate Change, Ph. D. Dissertation. INHA University. [Korean Literature]
  10. Kim, JW., Kim, DH., Joo, HJ., Noh, HS., Lee, JS., Kim, HS. (2018). Case study : On objective functions for the peak flow calibration and for the representative parameter estimation of the basin, Water, 10(5), pp. 614. [Korean Literature]
  11. Kouchi, D. H., Esmaili, K., Faridhosseini, A., Sanaeinejad, S. H., Khalili, D., Abbaspour, K. C. (2017). Sensitivity of Calibrated Parameters and Water Resource Estimates on Different Objective Functions and Optimization Algorithms, Water, 9, pp. 384.
  12. Kwak JW., Kim, DG., Hong IP, Kim, HS. (2009). A Study of Progressive Parmeter Calibrations for Rainfall-Runoff Models, J. of Korean Wetlands Society, 11(2), pp. 107-121. [Korean Literature]
  13. Lee, DE., Kim, YS., Yu, WS., Lee, GH. (2017). Evaluation on applicability of on/off-line parameter calibration techniques in rainfall-runoff modeling, J. of Korea Water Resources Association, 50(4), pp. 241-252. [Korean Literature]
  14. Lee, MJ., Kim, BJ., Kim, JS., Kim, DH., Lee, DR., Kim, HS. (2017). Parameter Calibration and Estimation for SSARR Model for Predicting Flood Hydrograph in Miho Stream, J. of Korean Wetlands Society, 19(4), pp. 423-432. [Korean Literature]
  15. Madsen, H., Wilson, G., Ammentrop, H. C. (2002) Comparison of different automated strategies for calibration of rainfall-runoff models, J. of Hydrol, 261, pp. 48-59.
  16. Minstry of Land Infrastructure and Transport (2011). Maintenance plan of the Gyeongan Stream. [Korean Literature]
  17. Mohan, S (1997). Parameter estimation of nonlinear Muskingum models using genetic algorithm, J. of Hydraul ENG, 123(2), pp. 137-142.
  18. Remegio, B., Confesor, JR., Gerald, W., Whittaker. (2007). Automatic Calibration of Hydrologic Models With Multi-Objective Evolutionary Algorithm and Pareto Optimization, J. of the American Water Resources Association, 43(4), pp. 981-989.
  19. Shahzad, M. K. (2011). A Data Based Flood Forecasting Model for the Mekong River, Ph. D. Dissertation, Karlsruhe Institute of Technology, Karlsruhe, Baden-Wurttemberg, Germany.
  20. Song, JH., Kim, HS., Hong, LP., Kim, SU. (2006). Parameter Calibration of Storage Function Model and Flood Forecasting (1) Calibration Methods and Evaluation of Simulated Flood Hydrograph, J. of Korean Society of Engineers, 26(1), pp. 27-38. [Korean Literature]
  21. Victor, P. and Alexander, P. (2012). Evaluating a Hydrological Flood Routing Function for Implementation into a Hydrological Energy Model, Lund University, Lund, Sweden.
  22. Yu, P. S. and Yang, T. C. (2000). Fuzzy multi-objective function for rainfall-runoff model calibration, J. of Hydrology. 238, pp. 1-14.
  23. Zhang, C., Wang, R. B., Meng, Q. X. (2015). Calibration of Conceptual Rainfall-Runoff Models Using Grobal Optimization, Advances in Meteorol, pp. 12.