A numerical study on ice failure process and ice-ship interactions by Smoothed Particle Hydrodynamics

  • Zhang, Ningbo (College of Shipbuilding Engineering, Harbin Engineering University) ;
  • Zheng, Xing (College of Shipbuilding Engineering, Harbin Engineering University) ;
  • Ma, Qingwei (Schools of Mathematics, Computer Science and Engineering, City, University of London) ;
  • Hu, Zhenhong (College of Shipbuilding Engineering, Harbin Engineering University)
  • Received : 2018.07.29
  • Accepted : 2019.02.19
  • Published : 2019.02.18


In this paper, a Smoothed Particle Hydrodynamics (SPH) method is extended to simulate the ice failure process and ice-ship interactions. The softening elastoplastic model integrating Drucker-Prager yield criterion is embedded into the SPH method to simulate the failure progress of ice. To verify the accuracy of the proposed SPH method, two benchmarks are presented, which include the elastic vibration of a cantilever beam and three-point bending failure of the ice beam. The good agreement between the obtained numerical results and experimental data indicates that the presented SPH method can give the reliable and accurate results for simulating the ice failure progress. On this basis, the extended SPH method is employed to simulate level ice interacting with sloping structure and three-dimensional ice-ship interaction in level ice, and the numerical data is validated through comparing with experimental results of a 1:20 scaled Araon icebreaker model. It is shown the proposed SPH model can satisfactorily predict the ice breaking process and ice breaking resistance on ships in ice-ship interaction.


Supported by : National Natural Science Foundation of China, Natural Science Foundation of Heilongjiang Province China, Central Universities, Dalian University of Technology


  1. Adami, S., Hu, X.Y., Adams, N.A., 2012. A generalized wall boundary condition for smoothed particle hydrodynamics. J. Comput. Phys. 231 (21), 7057-7075.
  2. Aksnes, V., 2010. A simplified interaction model for moored ships in level ice. Cold Reg. Sci. Technol. 63 (1), 29-39.
  3. Benz, W., Asphaug, E., 1995. Simulations of brittle solids using smooth particle hydrodynamics. Comput. Phys. Commun. 87, 253-265.
  4. Bouscasse, B., Colagrossi, A., Marrone, S., Antuono, M., 2013. Nonlinear water wave interaction with floating bodies in sph. J. Fluid Struct. 42 (4), 112-129.
  5. Bui, H., Fukagawa, R., Sako, K., Ohno, S., 2008. Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elasticeplastic soil constitutive model. Int. J. Numer. Anal. Methods Geomech. 32 (12), 1537-1570.
  6. Cho, S.R., Jeong, S.Y., Lee, S., 2013. Development of effective model test in pack ice conditions of square-type ice model basin. Ocean Eng. 67 (67), 35-44.
  7. Cho, S.R., Lee, S., 2015. A prediction method of ice breaking resistance using a multiple regression analysis. Int. J. Nav. Arch. Ocean. 7 (4), 708-719.
  8. Deb, D., Pramanik, R., 2013. Failure process of brittle rock using smoothed particle hydrodynamics. J. Eng. Mech. 139 (11), 1551-1565.
  9. Eghtesad, A., Shafiei, A.R., Mahzoon, M., 2012. A new fluidesolid interface algorithm for simulating fluid structure problems in fgm plates. J. Fluid Struct. 30 (2), 141-158.
  10. Gao, Y., Hu, Z., Ringsberg, J.W., Wang, J., 2015. An elasticeplastic ice material model for ship-iceberg collision simulations. Ocean Eng. 102, 27-39.
  11. Gotoh, H., Khayyer, A., 2018. On the state-of-the-art of particle methods for coastal and ocean engineering. Coast Eng. J. 60 (1), 79-103.
  12. Gray, J., Monaghan, J., Swift, R., 2001. SPH elastic dynamics. Comput. Methods Appl. Mech. Eng. 190 (49-50), 6641-6662.
  13. Hu, J., Zhou, L., 2015. Experimental and numerical study on ice resistance for icebreaking vessels. Int. J. Nav. Arch. Ocean. 7 (3), 626-639.
  14. Jeong, S.Y., Choi, K., Kang, K.J., Ha, J.S., 2017. Prediction of ship resistance in level ice based on empirical approach. Int. J. Nav. Arch. Ocean. 9 (6).
  15. Ji, S.Y.,Wang, A.L., Su, J., Yue, Q.J., 2011. Experimental studies on elastic modulus and flexural strength of sea ice in the bohai sea. J. Cold Reg. Eng. 25 (4), 182-195.
  16. Jordaan, I.J., 2001. Mechanics of iceestructure interaction. Eng. Fract. Mech. 68 (17), 1923-1960.
  17. Keinonen, A.J., Browne, R., Revill, C., Reynolds, A., 1996. Icebreaker Characteristics Synthesis, Report TP 12812E. The Transportation Development Centre, Transport Canada, Ontario.
  18. Khayyer, A., Gotoh, H., Falahaty, H., Shimizu, Y., 2018. An enhanced isph-sph coupled method for simulation of incompressible fluid-elastic structure interactions. Comput. Phys. Commun. 232, 139-164.
  19. Khayyer, A., Gotoh, H., Shimizu, Y., Gotoh, K., Shao, S., 2017. An enhanced particle method for simulation of fluid flow interactions with saturated porous media. Journal of JSCE Ser B2 73 (2), I_841-I_846.
  20. Lau, M., Akinturk, A., 2011. KORDI Araon Model Tests in Ice Using the Planar Motion Mechanism, Report LM-2011-04. Canada: St. John's, Newfoundland and Labrador. National Research Council - Institute for Ocean Technology.
  21. Libersky, L.D., Petschek, A.G., 1991. Smoothed particle hydrodynamics with strength of materials. In: Trease, H., Friits, J., Crowley, W. (Eds.), Proceedings of the Next Free Lagrange Conference, vol. 395. Springer, New York, pp. 248-257.
  22. Lindqvist, G., 1989. A straightforward method for calculation of ice resistance of ships. The 10th International Conference on Port and Ocean Engineering Under Arctic Conditions 2, 722-735.
  23. Liu, R.W., Xue, Y.Z., Lu, X.K., Cheng, W.X., 2018. Simulation of ship navigation in ice rubble based on peridynamics. Ocean Eng. 148, 286-298.
  24. Long, S.Y., 2014. Meshless Methods and Their Applications in Solid Mechanics. Science Press, Beijing, China, pp. 235-238.
  25. Lubbad, R., Loset, S., 2011. A numerical model for real-time simulation of ship-ice interaction. Cold Reg. Sci. Technol. 65, 111-127.
  26. Lu, W.J., Serre, N., Hoyland, K.V., Evers, K.U., 2013. Rubble Ice Transport on Arctic Offshore Structures (RITAS), part IV: tactile sensor measurement of the level ice load on inclined plate. In: Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions, Espoo, Finland.
  27. Ma, Q.W., 2008. A new meshless interpolation scheme for MLPG_R method. CMESComput. Model. Eng. Sci. 23 (2), 75-89.
  28. Matlock, H., Dawkins, W.P., Panak, J.J., 1969. A model for the prediction of icestructure interaction. In: Annual Offshore Technology Conference, Dallas, USA, pp. 687-694.
  29. Monaghan, J.J., Lattanzio, J.C., 1985. A refined particle method for astrophysical problems. Astron. Astrophys. 149 (149), 135-143.
  30. Monaghan, J.J., 1992. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543-574.
  31. Monaghan, J.J., 2000. SPH without a tensile instability. J. Comput. Phys. 159 (2), 290-311.
  32. Morris, J., Fox, P., Zhu, Y., 1997. Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136 (1), 214-226.
  33. Paavilainen, J., Tuhkuri, J., Polojarvi, A., 2011. 2D numerical simulation of ice rubble formation process against an inclined structure. Cold Reg. Sci. Technol. 68 (1-2), 20-34.
  34. Randles, P., Libersky, L., 1996. Smoothed particle hydrodynamics: some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 139 (1), 375-408.
  35. Schulson, E.M., 1997. The brittle failure of ice under compression. J. Phys. Chem. B 101 (32), 6254-6258.
  36. Schulson, E.M., 2001. Brittle failure of ice. Eng. Fract. Mech. 68 (17), 1839-1887.
  37. Schulson, E.M., Duval, P., 2009. Creep and Fracture of Ice. Cambridge University Press, Cambridge, UK.
  38. Shao, S.D., Lo, E.Y.M., 2003. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour. 26 (7), 787-800.
  39. Shi, Y., Li, S.W., Chen, H.B., He, M., Shao, S.D., 2018. Improved SPH simulation of spilled oil contained by flexible floating boom under waveecurrent coupling condition. J. Fluid Struct. 76, 272-300.
  40. Su, B., Riska, K., Moan, T., 2010. A numerical method for the prediction of ship performance in level ice. Cold Reg. Sci. Technol. 60, 177-188.
  41. Swegle, J., Hicks, D., Attaway, S., 1995. Smoothed particle hydrodynamics stability analysis. J. Comput. Phys. 116 (1), 123-134.
  42. Valanto, P., 2001. The resistance of ships in level ice. SNAME Transactions 109, 53-83.
  43. Withalm, M., Hoffmann, N.P., 2010. Simulation of full-scale ice-structure-interaction by an extended Matlock-model. Cold Reg. Sci. Technol. 60, 130-136.
  44. Zhang, N.B., Zheng, X., Ma, Q.W., 2017. Updated smoothed particle hydrodynamics for simulating bending and compression failure progress of ice. Water 9 (11), 882.
  45. Zheng, X., Ma, Q.W., Duan, W.Y., 2014. Incompressible SPH method based on Rankine source solution for violent water wave simulation. J. Comput. Phys. 276, 291-314.
  46. Zheng, X., Shao, S.D., Khayyer, A., Duan, W.Y., Ma, Q.W., Liao, K.P., 2017. Corrected first-order derivative ISPH in water wave simulations. Coast Eng. J. 59 (1), 1750010.
  47. Zhou, L., Chuang, Z., Ji, C., 2018a. Ice forces acting on towed ship in level ice with straight drift. part І: analysis of model test data. Int. J. Nav. Arch. Ocean. 10 (1), 60-68.
  48. Zhou, L., Chuang, Z., Ji, C., 2018b. Ice forces acting on towed ship in level ice with straight drift. part ІІ: numerical simulation. Int. J. Nav. Arch. Ocean. 10 (2), 119-128.
  49. Zhou, L., Riska, K., Moan, T., Su, B., 2013. Numerical modeling of ice loads on an icebreaking tanker: comparing simulations with models tests. Cold Reg. Sci. Technol. 87 (3), 33-46.
  50. Zhou, Q., Peng, H., Qiu, W., 2016. Numerical investigations of ship-ice interaction and maneuvering performance in level ice. Cold Reg. Sci. Technol. 122, 36-49.