An Oxalic Acid Sensor Based on Platinum/Carbon Black-Nickel-Reduced Graphene Oxide Nanocomposites Modified Screen-Printed Carbon Electrode

  • Income, Kamolwich (Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi) ;
  • Ratnarathorn, Nalin (Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi) ;
  • Themsirimongkon, Suwaphid (Department of Chemistry, Faculty of Science, Chiang Mai University) ;
  • Dungchai, Wijitar (Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi)
  • Received : 2019.05.04
  • Accepted : 2019.07.28
  • Published : 2019.12.31


A novel non-enzymatic oxalic acid (OA) sensor based on the platinum/carbon black-nickel-reduced graphene oxide (Pt/CBNi-rGO) nanocomposite is reported. The nanocomposites were prepared by the ethylene glycol reduction method. Their morphology and chemical composition were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results clearly demonstrated the formation of the Pt/CB-Ni-rGO nanocomposite. The electrocatalytic activity of the Pt/CB-Ni-rGO electrode was investigated by cyclic voltammetry. It was determined that the appropriate amount of Pt enhanced the catalytic activity of Pt for oxalic acid electro-oxidation. Moreover, the modified electrode was determined to be highly selective for oxalic acid without interference from compounds commonly found in urine including uric acid and ascorbic acid. The chronoamperometric signal gave a wide linearity range of 20 μM-60 mM and the detection limit (3σ) was found to be 2.35 μM. The proposed method showed high selectivity, stability, and good reproducibility and could be used with micro-volumes of sample for the detection of oxalic acid. Finally, the oxalic acid content in artificial and control urine samples were successfully determined by our proposed electrode.


Supported by : King Mongkut's University of Technology Thonburi


  1. A. Hogkinson, "Oxalic acid in biology and medicine", New York: Academic press, 1977, pp. 104-158.
  2. C.S. Pundir, N.K. Kuchhal, and M.S. Thakur, Indian J. Biochem. Biophys., 1998, 35(2), 120-122.
  3. C.S. Pundir, and M.S. Thaku, Clin. Chem., 1998, 44(6), 1364-1365.
  4. D.L. Earnest, G. Johnson, H.E. Williams, and W.H. Admirand, Gastroenterol, 1974, 66(6), 1114-1122.
  5. L. Yang, H. Jianshe, W. Dawei, H. Haoqing, and Y. Tianyan, Anal. Methods, 2010, 2(7), 855-859.
  6. C. Fua, L.X. Wang, and Y.Z. Fang, Talanta, 1999, 50(5), 953-958.
  7. D.R. Skotty, and T.A. Nieman, J. Chromatogr., 1995, 665(1), 27-36.
  8. A.A. Ensafi, and A. Kazemzadeh, Fresenius J. Anal. Chem., 2000, 367(6), 590-592.
  9. A. Mokhtari, M. Keyvanfard, and I. Emami, RSC Adv, 2015, 5(37), 29214-29221.
  10. S. Peldszus, P.M. Huck, and S.A. Andrews, J. Chromatogr. A, 1998, 793(1), 198-203.
  11. E.F. Perez, G.O. Neto, and L.T. Kubota, Sens. Actuators, B, 2001, 72(1), 80-85.
  12. Y.Y. Zhang, X.Y. Bai, X.M. Wang, K.K. Shiu, Y. Zhu, and H. Jiang, Anal. Chem., 2014, 86(19), 9459-9465.
  13. Y.H. Fu, Y.P. Lin, T.S. Chen, and L.S. Wang, J. Electroanal. Chem., 2012, 687, 25-29.
  14. T.A. Ivandini, T.N. Rao, A. Fujishima, and Y. Einaga, Anal. Chem., 2006, 78(10), 3467-3471.
  15. Z. Yanqiong, Y. Changzhu, P. Wenhong, and Z. Jingdong, Food Chem., 2009, 114(4), 1523-1528.
  16. C.M. Welch, and R.G. Compton, Anal. Bioanal. Chem., 2006, 384(3), 601-619.
  17. L.G. Shaidarova, and G.K. Budnikov, J. Anal. Chem., 2008, 63, 922-942.
  18. M. Oyama, Anal. Sci., 2010, 26(1), 1-12.
  19. M. J. Chollier-Brym, F. Epron, E. Lamy-Pitara, and J. Barbier, J. Electroanal. Chem., 1999, 474(2), 147-154.
  20. S. N. Pron'kin, O. A. Petrii, G. A. Tsirlina, and D. J. Schiffrin, J. Electroanal. Chem., 2000, 480(1-2), 112-119.
  21. L. C. Rockombeny, J. P. Feraud, B. Queffelec, D. Ode, and T. Tzedakis, Electrochim. Acta, 2012, 66, 230-238.
  22. H. J. Wang, M. Imura, Y. Nemoto, S. E. Park, and Y. Yamauchi, Chem. Asian J., 2012, 7(4), 802-808.
  23. J. Y. Shin, Y. S. Kim, Y. Lee, J. H. Shim, C. Lee, and S. G. Lee, Chem. Asian J., 2011, 6(8), 2016-2021.
  24. S. J. Guo, D. Wen, Y. M. Zhai, S. J. Dong, and E. K. Wang, ACS Nano, 2010, 4(7), 3959-3968.
  25. E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, and I. Honma, Nano Lett., 2009, 9(6), 2255-2259.
  26. A. Iwan, M. Malinowski, and G. Pasciak, Renew. Sustain. Energy Rev., 2015, 49, 954-967.
  27. N. Seselj, C. Engelbrekt, and J. Zhang, Sci. Bull., 2015, 60(9), 864-876.
  28. E. Quesnel, F. Roux, F. Emieux, P. Faucherand, E. Kymakis, G. Volonakis, F.Giustino, B. Martin-Garia, I. Moreels, and S.A. Gursel, 2D Mater., 2015, 2(30204), 1-16.
  29. A. Marinkas, F. Arena, J. Mitzel, G.M. Prinz, A. Heinzel, V. Peinecke, and H. Natter, Carbon, 2013, 58, 139-150.
  30. S. Park, Y. Shao, H. Wan, P.C. Rieke, V.V. Viswanathan, S.A. Towne, L.V. Saraf, W.J. Liu, Y. Lin, and Y. Wang, Electrochem. Commun., 2011, 13(3), 258-261.
  31. K. Income, N. Ratnarathorn, N. Khamchaiyo, C. Srisuvo, L. Ruckthong, and W. Dungchai, Int. J. Anal. Chem., 2019, 1-11.
  32. S. Chutipongtanate, and V. Thongboonkerd, Anal. Biochem., 2010, 402(1), 110-112.
  33. A.J. Bard, and L.R. Faulkner, "Fundamentals and Applications: Electrochemical Methods", Wiley, New York, 2001.
  34. C.O. Laoire, S. Mukerjee, K.M. Abraham, E.J. Palichta, and M.A. Hendrickson, J. Phys. Chem. C, 2009, 113(46), 20127-20134.
  35. R.B. Keithley, P. Takmakov, E.S. Bucher, A.M. Belle, C.A. Owesson-White, J. Park, and R.M. Wightman, Anal. Chem., 2011, 83(9), 3563-3571.
  36. X. Cao, X. Cai, Q. Feng, S. Jia, and N. Wang, Anal. Chim. Acta, 2012, 752, 101-105.
  37. G.W. Latimer, "Guidelines for Standard Method Performance Requirements: Official Methods of Analysis", 20th ed, United States: AOAC International, 2016, pp. 1-7.
  38. T. A. Ivandini, T. N. Rao, A. Fujishima, and Y. Einaga, Anal. Chem., 2006, 78(10), 3467-3471.
  39. T. C. Canevari, J. Arguello, M. S. P. Francisco, and Y. Gushikem, J. Electroanal. Chem., 2007, 609(2), 61-67.
  40. F. Manea, C. Radovan, I. Corb, A. Pop, G. Burtica, P. Malchev, S. Picken, and J. Schoonman, Sensors, 2007, 7(4), 615-627.
  41. H. Ahmar, A. R. Fakhari, M. R. Nabid, S. J. T. Rezaei, and Y. Bide, Sens. Actuators B Chem., 2012, 171, 611-618.
  42. A. R. Fakhari, B. Rafiee, H. Ahmar, and A. Bagheri, Anal. Methods, 2012, 4(10), 3314-3319.
  43. S. Lei, Z. Faqiong, and Z. Baizhao, Electroanalysis, 2013, 25(2), 453-459.
  44. C. Xiaomei, C. Zhixiong, H. Zhiyong, O. Munetaka, J. Yaqi, and C. Xi, Nanoscale, 2013, 5(13), 5779-5783.
  45. T. Maiyalagan, P. Kannan, M. J. Niedziolka, and J. N. Jonsson, Anal. Chem., 2014, 86(15), 7849-7857.
  46. J. B. Raoof, F. Chekin, and V. Ehsani, Sens. Actuators B Chem., 2015, 207, 291-296.
  47. W. Xiaofeng, C. Yong, Y. Zheng, S. Hailiang, G. Shixing, L. Jun, and S. Wei, Ionics., 2015, 21(3), 877-884.
  48. L. Dandan, W. Yaoxian, and Z. Ganqing, Int. J. Electrochem. Sci., 2015, 10, 6794-6802.
  49. M. Le, Z. Qiang, Z. Min, W. Lishi, and C. Faliang, J. Exp. Nanosci., 2016, 11(16), 1242-1252.