Enhanced Activity for Oxygen Evolution Reaction of Nanoporous IrNi thin film Formed by Electrochemical Selective Etching Process

  • Park, Shin-Ae (School of Mechanical Engineering, Pusan National University) ;
  • Shim, Kyubin (Department of Materials Science and Engineering, Pohang University of Science and Technology) ;
  • Kim, Kyu-Su (School of Mechanical Engineering, Pusan National University) ;
  • Moon, Young Hoon (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Yong-Tae (School of Mechanical Engineering, Pusan National University)
  • Received : 2019.05.08
  • Accepted : 2019.07.05
  • Published : 2019.12.31


Water electrolysis is known as the most sustainable and clean technology to produce hydrogen gas, however, a serious drawback to commercialize this technology is due to the slow kinetics in oxygen evolution reaction (OER). Thus, we report on the nanoporous IrNi thin film that reveals a markedly enhanced OER activity, which is attained through a selective etching of Os from the IrNiOs alloy thin film. Interestingly, electrochemical selective etching of Os leads to the formation of 3-dimensionally interconnected nanoporous structure providing a high electrochemical surface area (ECSA, 80.8 ㎠), which is 90 fold higher than a bulk Ir surface (0.9 ㎠). The overpotential at the nanoporous IrNi electrode is markedly lowered to be 289 mV at 10 mA cm-2, compared with bulk Ir (375 mV at 10 mA cm-2). The nanoporous IrNi prepared through the selective de-alloying of Os is promising as the anode material for a water electrolyzer.


Supported by : Pusan National University


  1. MS. Dresselhaus and IL. Thomas, Nature., 2001, 414, 332-337.
  2. L. Schlapbach and A. Zuttel, Nature., 2001, 414, 353-358.
  3. BCH. Steele and A. Heinzel. Nature., 2001, 414, 345-352.
  4. VR. Stamenkovic, D. Strmcnik, PP. Lopes and NM. Markovic, Nat Mater., 2017, 16(1), 57-69.
  5. J. Moorhouse, Modern chlor-alkali technology, Willey, New York, 2001.
  6. T. O'Brien, TV. Bommaraju and F. Hine, Handbook of Chlor-Alkali Technology, Kluewer Academic/Plenum, New York, 2005.
  7. JD. Holladay, J. Hu and DL. King and Y. Wang, Catal Today., 2009, 139(4), 244-260.
  8. I. Katsounaros, S. Cherevko and AR. Zeradjanin and Karl J. J. Mayrhofer, Angew Chem Int Ed., 2014, 53(1), 102-121.
  9. D. Pletcher and FC Walsh, Industrial Electrochemistry. Springer, Germany, 1993.
  10. A. Marshall, B. Borresen, G. Hagen, M. Tsypkin and R. Tunold, Energy., 2007, 32(4), 431-436.
  11. TR. Cook, DK. Dogutan, SY. Reece, Y. Surendranath, TS. Teets and DG. Nocera, Chem Rev., 2010, 110(11), 6474-6502.
  12. T. Reier, HN. Nong, D. Teschner, R. Schlogl and P. Strasser, Adv Energy Mater., 2017, 7(1), 1601275.
  13. T. Reier, M. Oezaslan and P. Strasser, ACS Catal., 2012, 2(8), 1765-1772.
  14. N. Hodnik, P. Jovanovic, A. Pavlisic, B. Jozinovic, M. Zorko, M. Bele, V. S. Selih. M. Sala, S. Hocevar, M. Gaberscek, J. Phys. Chem. C 2015, 119(18), 10140-10147
  15. M. Wohlfahrt-Mehrens and J. Heitbaum, J Electroanal Chem., 1987, 237(2), 251-260.
  16. KC. Neyerlin, G. Bugosh, R. Forgie, Z. Liu and P. Strasser, J Electrochem Soc., 2009, 156(3), B363-B369.
  17. R. Forgie, G. Bugosh, KC. Neyerlin, Z. Liu and P. Strasser, Electrochem Solid-State Lett., 2010, 13(4), B36-B39.
  18. L. Ma, S. Sui and Y. Zhai, J Power Sources., 2008, 177(2), 470-477.
  19. E. Ortel, T. Reier, P. Strasser, and R. Kraehnert, Chem Mater., 2011, 23(13), 3201-3209.
  20. S. Sui, L. Ma and Y. Zhai, Asia Pac J Chem Eng., 2009, 4(1), 8-11.
  21. T. Nakagawa, CA. Beasley and RW. Murray, J Phys Chem C., 2009, 113(30), 12958-12961.
  22. N. Danilovic, R. Subbaraman, KC. Chang, SH. Chang, Y. Kang, J. Snyder, AP. Paulikas, D. Strmcnik, YT. Kim, D. Myers, VR. Stamenkovic, and NM. Markovic, Angew Chem Intl Ed., 2014, 53(51), 14016-14021.
  23. HN. Nong, L. Gan, E. Willinger., D. Teschner and P. Strasser, Chem Sci., 2014, 5(8), 2955-2963.
  24. T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones, D. Teschner, S. Selve, A. Bergmann, HN. Nong, R. Schlogl, KJJ. Mayrhofer and P. Strsser, J Am Chem Soc., 2015, 137(40), 13031-13040.
  25. J. Feng, F. Lv, Y. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G-C. Wang and S. Guo. Adv Mater., 2017, 29(47), 1703798.
  26. HN. Nong, HS. Oh, T. Reier, E. Willinger, MG. Willinger, V. Petkov, D. Teschner and P. Strasser, Angew Chem Int Ed., 2015, 54(10), 2975-2979.
  27. C. Wang, Y. Sui, G. Xiao, X. Yang, Y. Wei, G. Zou and B. Zou, J Mater Chem A., 2015, 3(39), 19669-19673.
  28. W. Hu, H. Zhong, W. Liang and S. Chen, ACS Appl Mater & Interfaces., 2014, 6(15), 12729-12736.
  29. Y. Pi, Q. Shao, P. Wang, J. Guo and X. Huang, Adv Funct Mater., 2017, 27(27), 1700886.
  30. J. Hu, J. Zhang, H. Meng and C. Cao, J Mate Sci., 2003, 38(4), 705-712.
  31. YT. Kim, PP. Lopes, SA. Park, AY. Lee, J. Lim, H. Lee, S. Back, Y. Jung, N. Danilovic, V. Stamenkovic, J. Erlebacher, J. Snyder and NM. Markovic, Nat Commun., 2017, 8(1), 1449.
  32. J. Erlebacher, MJ. Aziz, A. Karma, N. Dimitrov and K. Sieradzki, Nature, 2001, 410(6827), 450-453.
  33. Y. Ding and J. Erlebacher, J Am Chem Soc., 2003, 125(26), 7772-7773.
  34. E. Ozer, C. Spori, T. Reier and P. Strasser, ChemCatChem., 2017, 9(4), 597-603.
  35. J. Juodkazytė, B. Sebeka, I. Valsiunas, K. Juodkazis, Electroanalysis, 2005, 17(11), 947-952.
  36. KA. Stoerzinger, L. Qiao, MD. Biegalski and Y. Shao-Horn, J Phys Chem Lett., 2014, 5(10), 1636-1641.
  37. CCL. McCrory, S. Jung, JC. Peters and TF. Jaramillo, J Am Chem Soc., 2013, 135(45), 16977-16987.