DOI QR코드

DOI QR Code

Sol-gel TiO2/Carbon Paste Electrode Nanocomposites for Electrochemical-assisted Sensing of Fipronil Pesticide

  • Maulidiyah, Maulidiyah (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo) ;
  • Azis, Thamrin (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo) ;
  • Lindayani, Lindayani (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo) ;
  • Wibowo, Dwiprayogo (Department of Pharmacy, Faculty of Sciences and Technology, Institut Teknologi dan Kesehatan Avicenna) ;
  • Salim, La Ode Agus (Department of Pharmacy, Faculty of Sciences and Technology, Institut Teknologi dan Kesehatan Avicenna) ;
  • Aladin, Andi (Chemical Engineering, Faculty of Industrial Technology, Universitas Muslim Indonesia) ;
  • Nurdin, Muhammad (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo)
  • Received : 2019.04.30
  • Accepted : 2019.06.24
  • Published : 2019.12.31

Abstract

The unique study of TiO2 sol-gel modified carbon paste electrode (CPE) nanocomposites have been developed for electrochemical sensor detecting fipronil pesticide compound. We develop the easy synthesized TiO2 via a sol-gel method and modified in CPE which applied electrochemical system as cyclic voltammetry (CV) because the concentration is proportional with current peaks. We discover the TiO2 optimal mass used of 0.1 g which is compared with 0.7 g carbon and 0.3 mL paraffin. It has high-current anodic (Ipa) of 1.13×103 μA and high-current cathodic (Ipc) -0.96×103 μA in scan rate of 0.5 V/s. The limit of detection (LOD) of fipronil has been determined of 34.0×10-5 μM in percent recovery of 0.8%. Its high-stability for lifetime TiO2-CPE nanocomposites was expressed for 13 days which mean that can be used for detecting fipronil pesticide.

Acknowledgement

Supported by : DRPM-Ministry of Research, Technology and Higher Education

References

  1. D. Akyuz, T. Keles, Z. Biyiklioglu, and A. Koca, J. Electroanal.-Chem, 2017, 804, 53-63. https://doi.org/10.1016/j.jelechem.2017.09.044
  2. M. Nurdin, M. Maulidiyah, L. O. A. Salim, M. Z. Muzakkar, and A. A. Umar, Microchem. J, 2018, 145, 756-761.
  3. A.D. Goff, P. Saranjampour, L.M. Ryan, M.L. Hladik, J.A. Chovi, K.L. Armbust, S.M. Brander, Aquat. Toxicol, 2017, 186, 96-104. https://doi.org/10.1016/j.aquatox.2017.02.027
  4. R.-Y. Tang, P. Zhong, Q.-L. Lin, M.-L. Hu, and Q. Shi, Acta Crystallogr. Sect. E Struct. Reports Online, 2005, 61(12), 4374-4375. https://doi.org/10.1107/S1600536805039280
  5. Y. Zhang, X. Meng, Y. Yang, H. Li, X. Wang, B. Yang, J. Zhang, C. Li, N.S. Millar, Z. Liu., Sci. Rep, 2016, 6, 32335. https://doi.org/10.1038/srep32335
  6. D.R. Roshan, S.V.S. Raju, and K.N. Singh, J. Pure Appl. Microbiol, 2016, 10(4), 2773-2783. https://doi.org/10.22207/JPAM.10.4.36
  7. N. Kumar, R. Kumar, N.A. Shakil, D.J. Sarkar, and S. Chander, Int. J. Pest Manag, 2018, 1-8.
  8. M. Shahbaaz, S. Kanchi, M. Sabela, and K. Bisetty, Pan Stanford, 2018, 287-311.
  9. Q. Tu, M.E. Hickey, T. Yang, S. Gao, Q. Zhang, Y. Qu, X. Du, J. Wang, L. He, Food Control, 2019, 96, 16-21, 2019. https://doi.org/10.1016/j.foodcont.2018.08.025
  10. X. Peng, Y. Li, H. Xia, L. Peng, and Y. Feng, J. Sep. Sci, 2016, 39(11), 2196-2203. https://doi.org/10.1002/jssc.201501250
  11. S. Biswas, R. Mondal, A. Mukherjee, M. Sarkar, and R. K. Kole, Food Chem, 2019, 272, 559-567. https://doi.org/10.1016/j.foodchem.2018.08.087
  12. X. Wu, Y. Yu, J. Xu, F. Dong, X. Liu, P. Du, D. Wei, and Y. Zheng, PLoS One, 2017, 12(3), 0173690.
  13. P. Zhou, Q. Huang, L. Ouyang, Z. Wang, P. Meng, M. Dai, Y. Wang, Chinese J. Chromatogr, 2018, 36(7), 629-633. https://doi.org/10.3724/SP.J.1123.2018.01049
  14. A.A. Ensafi, H. Bahrami, B. Rezaei, and H. Karimi-Maleh, Mater. Sci. Eng. C, 2013, 33(2), 831-835. https://doi.org/10.1016/j.msec.2012.11.008
  15. M. Nurdin, M. Z. Muzakkar, M. Maulidiyah, N. Maulidiyah, and D. Wibowo, J. Mater. Environ. Sci, 2016, 7(9), 3334-3343.
  16. A.W. Wahab, N. La Nafie, and M. Nurdin, Int. J. Sci. Technol. Res, 2013, 2(12), 220-224.
  17. M. Nurdin, T. Azis, M. Maulidiyah, A. Aladin, N.A. Hafid, L. O. A. Salim, and D. Wibowo, IOP Conference Series: Materials Science and Engineering, 2018, 367(1), 12048. https://doi.org/10.1088/1757-899X/367/1/012048
  18. J.B. Raoof, R. Ojani, and M. Baghayeri, Chinese J. Catal., 2011, 32(11-12), 1685-1692. https://doi.org/10.1016/S1872-2067(10)60268-9
  19. M. Shehata, S. M. Azab, A.M. Fekry, and M.A. Ameer, Biosens. Bioelectron., 2016, 79, 589-592. https://doi.org/10.1016/j.bios.2015.12.090
  20. C. Li, C. Wang, C. Wang, and S. Hu, Sensors Actuators B Chem, 2006, 117(1), 166-171. https://doi.org/10.1016/j.snb.2005.11.019
  21. F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, and L. Sun, ACS Appl. Mater. Interfaces, 2014, 6(18), 16140-16146. https://doi.org/10.1021/am504175x
  22. J.-B. Raoof, R. Ojani, and M. Baghayeri, Sensors Actuators B Chem, 2009, 143(1), 261-269. https://doi.org/10.1016/j.snb.2009.08.046
  23. A.A. Firooz, B. H. Nia, J. Beheshtian, and M. Ghalkhani, J. Electron. Mater, 2017, 46(10), 5657-5663. https://doi.org/10.1007/s11664-017-5625-3
  24. E. Zarei, M. R. Jamali, and J. Bagheri, Iran. J. Catal., 2018.
  25. H. Ritonga, C. E. Faiqoh, D. Wibowo, and M. Nurdin, Biosci. Biotechnol. Res. Asia, 2015, 12(3), 1189-1985.
  26. M. Nurdin, A. Zaeni, E.T. Rammang, M. Maulidiyah, and D. Wibowo, Anal. Bioanal. Electrochem, 2017, 9(4), 480-494.
  27. D. Wibowo, R. Salamba, and M. Nurdin, Orient. J. Chem, 2015, 31(4), 2337-2342. https://doi.org/10.13005/ojc/310462
  28. Nurhidayani, M. Z. Muzakkar, Maulidiyah, D. Wibowo, and M. Nurdin, IOP Conf. Ser. Mater. Sci. Eng, 2017, 267(1), 012035. https://doi.org/10.1088/1757-899X/267/1/012035
  29. D. Wibowo, Maulidiyah, Ruslan, T. Azis, and M. Nurdin, Anal. Bioanal. Electrochem, 2018, 10(4).
  30. L.O. Mursalim, Ruslan, R.A. Safitri, T. Azis, Maulidiyah, D. Wibowo, M. Nurdin, IOP Conference Series: Materials Science and Engineering, 2017, 267(1), 012006. https://doi.org/10.1088/1757-899X/267/1/012006
  31. Maulidiyah, T. Azis, A. T. Nurwahidah, D. Wibowo, and M. Nurdin, Environ. Nanotechnology, Monit. Manag., 2017, 8, 103-111. https://doi.org/10.1016/j.enmm.2017.06.002
  32. Maulidiyah, M. Nurdin, D. Wibowo, and A. Sani, Int. J. Pharm. Pharm. Sci., 2015, 7(6), 141-146.
  33. H. Lin, X. Ji, Q. Chen, Y. Zhou, C. E. Banks, and K. Wu, Electrochem. commun., 2009, 11(10), 1990-1995. https://doi.org/10.1016/j.elecom.2009.08.034
  34. M. Mazloum-ardakani, H. Rajabi, H. Beitollahi, B. Bi, and F. Mirjalili, Int. J. Electrochem. Sci, 2010, 5, 147-157.
  35. B. Hou, X. Cui, and Y. Chen, Solid State Ionics, 2018, 325, 148-156. https://doi.org/10.1016/j.ssi.2018.08.006
  36. J. Yin, X. Chen, and Z. Chen, Microchem. J., 2019, 145, 295-300. https://doi.org/10.1016/j.microc.2018.09.030
  37. M. Nurdin, M. Nurdin, N.A. Yanti, Suciani, A.H. Watoni, Maulidiyah, A. Aladin, and D. Wibowo, Asian J. Chem., 2018, 30(6), 1387-1392. https://doi.org/10.14233/ajchem.2018.21270
  38. L.V. Taveira, J.M. Macak, H. Tsuchiya, L.F. P.Dick, and P. Schmuki, J. Electrochem. Soc., 2005, 152(10), B405-B410. https://doi.org/10.1149/1.2008980
  39. R.S. Nicholson, Anal. Chem., 1965, 37(11), 1351-1355. https://doi.org/10.1021/ac60230a016
  40. G.E. Thompson, Thin Solid Films, 1997, 297(1-2), 192-201. https://doi.org/10.1016/S0040-6090(96)09440-0
  41. C.I. Torres, A. Kato Marcus, and B.E. Rittmann, Biotechnol. Bioeng., 2008, 100(5), 872-881. https://doi.org/10.1002/bit.21821