DOI QR코드

DOI QR Code

New High-Yield Method for the Production of Activated Carbon Via Hydrothermal Carbonization (HTC) Processing of Carbohydrates

  • Received : 2019.04.02
  • Accepted : 2019.06.03
  • Published : 2019.12.31

Abstract

Activated carbons (ACs) are considered important electrode materials for supercapacitors because their large specific surface areas lead to high charging capacities. In the conventional synthesis of ACs, a substantial amount of carbon is lost during carbonization of a precursor. The development of a method to synthesize ACs in high yield would lower their manufacturing cost. Here, we demonstrate the synthesis of high-specific-surface-area NaOH-AC from carbon prepared via a hydrothermal carbonization (HTC) route, with a higher yield than that achieved through conventional pyrolysis carbonization. The amorphous carbon was derived from HTC of sugar and subsequently activated at 800℃ with various NaOH etchant/C ratios under a N2 atmosphere. The AC prepared at 4:1 NaOH/C exhibited the highest surface area (as high as 2,918 ㎡ g-1) and the highest specific capacitance (157 F g-1 in 1 M aqueous Na2SO4 electrolyte solution) among the NaOH-AC samples prepared in this work. On the basis of their high specific capacitance, the NaOH-ACs prepared from HTC sugar are suitable for use as electrode materials for supercapacitors.

Acknowledgement

Supported by : Kyungpook National University

References

  1. H. Marsh, F. Rodriguez-Reinoso. Activated Carbon, Elsevier, 2006.
  2. L.R. Radovic. Chemistry and Physics of Carbon, Vol. 30. New York, CRC Press, 2007.
  3. K. Kinoshita. Carbon: Electrochemical and physicochemical properties. New York, John Wiley and Sons, 1988.
  4. T.F. Group. Activated Carbon: US Industry Study with Forecasts for 2020 & 2025, Freedonia, 2006.
  5. Eco-Business, https://www.eco-business.com/press-releases/us-demand-for-activated-carbon-to-approach-13-billionpounds-in-2017, 2013.
  6. F. Beguin, E. Frackowiak. Carbons for Electrochemical Energy Storage and Conversion Systems, Taylor & Francis, 2009.
  7. J. Reungoat, B.I. Escher, M. Macova, F.X. Argaud, W. Gernjak, J. Keller. Water Res. 2012, 46(3), 863-872. https://doi.org/10.1016/j.watres.2011.11.064
  8. T. Otowa, Y. Nojima, T. Miyazaki. Carbon. 1997, 35(9), 1315-1319. https://doi.org/10.1016/S0008-6223(97)00076-6
  9. B. Jurado-Sanchez, S. Sattayasamitsathit, W. Gao, L. Santos, Y. Fedorak, V.V. Singh, et al. Small. 2015, 11(4), 499-506. https://doi.org/10.1002/smll.201402215
  10. A.E. Aksoylu, M. Madalena, A. Freitas, M.F.R. Pereira, J.L. Figueiredo. Carbon. 2001, 39(2), 175-185. https://doi.org/10.1016/S0008-6223(00)00102-0
  11. H. Juntgen. Fuel. 1986, 65(10), 1436-1446. https://doi.org/10.1016/0016-2361(86)90120-1
  12. E. Lam, J.H.T. Luong. ACS Catalysis. 2014, 4(10), 3393-3410. https://doi.org/10.1021/cs5008393
  13. S.R. Sandeman, C.A. Howell, G.J. Phillips, A.W. Lloyd, J.G. Davies, S.V. Mikhalovsky, et al. Biomaterials. 2005, 26(34), 7124-7131. https://doi.org/10.1016/j.biomaterials.2005.05.019
  14. Y. Fang, D. Gu, Y. Zou, Z. Wu, F. Li, R. Che, et al. Angew. Chem. Int. Ed. 2010, 49(43), 7987-7991. https://doi.org/10.1002/anie.201002849
  15. L.L. Zhang, X.S. Zhao. Chem. Soc. Rev. 2009, 38(9), 2520-2531. https://doi.org/10.1039/b813846j
  16. M. Lu, F. Beguin, E. Frackowiak. Supercapacitors:Materials, Systems and Applications, Wiley, 2013.
  17. P. Simon, Y. Gogotsi. Nat. Mater. 2008, 7(11), 845-854. https://doi.org/10.1038/nmat2297
  18. H. Marsh, D.S. Yan, T.M. O'Grady, A. Wennerberg. Carbon. 1984, 22(6), 603-611. https://doi.org/10.1016/0008-6223(84)90096-4
  19. M. Toda, A. Takagaki, M. Okamura, J.N. Kondo, S. Hayashi, K. Domen, et al. Nature. 2005, 438(7065), 178-178. https://doi.org/10.1038/438178a
  20. C.E. Byrne, D.C. Nagle. Carbon. 1997, 35(2), 259-266. https://doi.org/10.1016/S0008-6223(96)00136-4
  21. L.R. Radovic. Chemistry and Physics of Carbon, Vol. 29. New York, CRC Press, 2007.
  22. S.-E. Chun, Y.N. Picard, J.F. Whitacre. J. Electrochem. Soc. 2011, 158(2), A83-A92. https://doi.org/10.1149/1.3518416
  23. S.-E. Chun, J.F. Whitacre. Electrochim. Acta. 2012, 60, 392-400. https://doi.org/10.1016/j.electacta.2011.11.082
  24. A. Burke. J. Power Sources. 2000, 91(1), 37-50. https://doi.org/10.1016/S0378-7753(00)00485-7
  25. A.J. Bard, R. Parsons, J. Jordan. Standard Potentials in Aqueous Solution, Taylor & Francis, 1985.
  26. P.-C. Hsu, H.-T. Chang. Chem. Commun. 2012, 48(33), 3984-3986. https://doi.org/10.1039/c2cc30188a
  27. B. Hu, K. Wang, L. Wu, S.-H. Yu, M. Antonietti, M.-M. Titirici. Advanced Materials. 2010, 22(7), 813-828. https://doi.org/10.1002/adma.200902812
  28. M.-M. Titirici, M. Antonietti. Chem. Soc. Rev. 2010, 39(1), 103-116. https://doi.org/10.1039/B819318P
  29. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, et al. Pure Appl. Chem. 1985, 57(4), 603-619. https://doi.org/10.1351/pac198557040603
  30. S. Brunauer, P.H. Emmett, E. Teller. Journal of the American Chemical Society. 1938, 60(2), 309-319. https://doi.org/10.1021/ja01269a023
  31. E.P. Barrett, L.G. Joyner, P.P. Halenda. Journal of the American Chemical Society. 1951, 73(1), 373-380. https://doi.org/10.1021/ja01145a126
  32. S.-E. Chun, J.F. Whitacre. J. Power Sources. 2013, 240, 306-313. https://doi.org/10.1016/j.jpowsour.2013.04.012