Observation of Water Consumption in Zn-air Secondary Batteries

  • Yang, Soyoung (Department of Chemistry & Energy Engineering, Sangmyung University) ;
  • Kim, Ketack (Department of Chemistry & Energy Engineering, Sangmyung University)
  • Received : 2019.05.06
  • Accepted : 2019.06.02
  • Published : 2019.12.31


Zn-air battery uses oxygen from the air, and hence, air holes in it are kept open for cell operation. Therefore, loss of water by evaporation through the holes is inevitable. When the water is depleted, the battery ceases to operate. There are two water consumption routes in Zn-air batteries, namely, active path (electrolysis) and passive path (evaporation and corrosion). Water loss by the active path (electrolysis) is much faster than that by the passive path during the early stage of the cycles. The mass change by the active path slows after 10 h. In contrast, the passive path is largely constant, becoming the main mass loss path after 10 h. The active path contributes to two-thirds of the electrolyte consumption in 24 h of cell operation in 4.0 M KOH. Although water is an important component for the cell, water vapor does not influence the cell operation unless the water is nearly depleted. However, high oxygen concentration favors the discharge reaction at the cathode.


Supported by : Sangmyung University


  1. H. Kim, G. Jeong, Y.U. Kim, J.H. Kim, C.M. Park, H.J. Sohn, Chem. Soc. Rev., 2013, 42(23), 9011-9034.
  2. J.E. Knutsen, Brit. J. Audiol., 1982, 16(3), 189-191.
  3. L.F. Arenas, A. Loh, D.P. Trudgeon, X. Li, C. Ponce de Leon, F.C. Walsh, Renew. Sust. Energ. Rev., 2018, 90, 992-1016.
  4. E. Deiss, F. Holzer, O. Haas, Electrochim. Acta, 2002, 47(25), 3995-4010.
  5. B. Hwang, E.-S. Oh, K. Kim, Electrochim. Acta, 2016, 216, 484-489.
  6. Y. Mizutani, J. Appl. Polym. Sci., 1996, 61(5), 735-739.<735::AID-APP3>3.0.CO;2-P
  7. H. Omidian, S.A. Hashemi, P.G. Sammes, I. Meldrum, Polymer, 1999, 40(7), 1753-1761.
  8. D. Lee, H.W. Kim, J.M. Kim, K.H. Kim, S.Y. Lee, ACS Appl. Mater. Interfaces, 2018, 10(26), 22210-22217.
  9. G.M. Wu, S.J. Lin, C.C. Yang, J. Membr. Sci., 2006, 280(1-2), 802-808.
  10. X. Zhu, H. Yang, Y. Cao, X. Ai, Electrochim. Acta, 2004, 49(16), 2533-2539.
  11. S. Liu, W. Han, B. Cui, X. Liu, F. Zhao, J. Stuart, S. Licht, J. Power Sources, 2017, 342, 435-441.
  12. A.L. Zhu, D. Duch, G.A. Roberts, S.X.X. Li, H.J. Wang, K. Duch, E. Bae, K.S. Jung, D. Wilkinson, S.A. Kulinich, ChemElectroChem, 2015, 2(1), 134-142.
  13. H. Yang, J. Power Sources, 2004, 128(1), 97-101.
  14. H.I. Kim, E.J. Kim, S.J. Kim, H.C. Shin, J. Appl. Electrochem., 2015, 45(4), 335-342.
  15. E. Malone, M. Berry, H. Lipson, Rapid Prototyping J., 2008, 14(3), 128-140.
  16. R. Thimmappa, M.C. Devendrachari, A.R. Kottaichamy, S. Aralekallu, M. Gautam, S.P. Shafi, Z. Manzoor Bhat, M.O. Thotiyl, J. Phys. Chem. C, 2017, 121(7), 3707-3713.
  17. J. Dobryszycki, S. Biallozor, Corros. Sci., 2001, 43(7), 1309-1319.
  18. M. Liang, H. Zhou, Q. Huang, S. Hu, W. Li, J. Appl. Electrochem., 2011, 41(8), 991-997.
  19. A.A. Mohamad, J. Power Sources, 2006, 159(1), 752-757.
  20. S. Qu, Z. Song, J. Liu, Y. Li, Y. Kou, C. Ma, X. Han, Y. Deng, N. Zhao, W. Hu, C. Zhong, Nano Energy, 2017, 39, 101-110.
  21. M.J. Tan, B. Li, P. Chee, X. Ge, Z. Liu, Y. Zong, X.J. Loh, J. Power Sources, 2018, 400, 566-571.
  22. H.F. Wang, C. Tang, B. Wang, B.Q. Li, X. Cui, Q. Zhang, Energy Storage Mater., 2018, 15, 124-130.
  23. M. Kar, B. Winther-Jensen, M. Armand, T.J. Simons, O. Winther-Jensen, M. Forsyth, D.R. MacFarlane, Electrochim. Acta, 2016, 188, 461-471.
  24. W. Ni, S. Liu, C. Du, Y. Fei, Y. He, X. Ma, L. Lu, Y. Deng, Int. J. Hydrogen Energy, 2017, 42(30), 19019-19027.
  25. S.Z. Liu, W. Han, B.C. Cui, X.J. Liu, F.L. Zhao, J. Stuart, S. Licht, J. Power Sources, 2017, 342, 435-441.
  26. S. Wang, J. Qin, T. Meng, M. Cao, Nano Energy, 2017, 39, 626-638.
  27. J. Bai, T. Meng, D. Guo, S. Wang, B. Mao, M. Cao, ACS Appl. Mater. Interfaces, 2018, 10(2), 1678-1689.
  28. A.R. Mainar, E. Iruin, L.C. Colmenares, A. Kvasha, I. de Meatza, M. Bengoechea, O. Leonet, I. Boyano, Z. Zhang, J.A. Blazquez, J. Energy Storage, 2018, 15, 304-328.
  29. B. Amini Horri, M. Choolaei, A. Chaudhry, H. Qaalib, Int. J. Hydrogen Energy, 2019, 44(1), 72-81.