DOI QR코드

DOI QR Code

Observation of Water Consumption in Zn-air Secondary Batteries

  • Yang, Soyoung (Department of Chemistry & Energy Engineering, Sangmyung University) ;
  • Kim, Ketack (Department of Chemistry & Energy Engineering, Sangmyung University)
  • Received : 2019.05.06
  • Accepted : 2019.06.02
  • Published : 2019.12.31

Abstract

Zn-air battery uses oxygen from the air, and hence, air holes in it are kept open for cell operation. Therefore, loss of water by evaporation through the holes is inevitable. When the water is depleted, the battery ceases to operate. There are two water consumption routes in Zn-air batteries, namely, active path (electrolysis) and passive path (evaporation and corrosion). Water loss by the active path (electrolysis) is much faster than that by the passive path during the early stage of the cycles. The mass change by the active path slows after 10 h. In contrast, the passive path is largely constant, becoming the main mass loss path after 10 h. The active path contributes to two-thirds of the electrolyte consumption in 24 h of cell operation in 4.0 M KOH. Although water is an important component for the cell, water vapor does not influence the cell operation unless the water is nearly depleted. However, high oxygen concentration favors the discharge reaction at the cathode.

Acknowledgement

Supported by : Sangmyung University

References

  1. H. Kim, G. Jeong, Y.U. Kim, J.H. Kim, C.M. Park, H.J. Sohn, Chem. Soc. Rev., 2013, 42(23), 9011-9034. https://doi.org/10.1039/c3cs60177c
  2. J.E. Knutsen, Brit. J. Audiol., 1982, 16(3), 189-191. https://doi.org/10.3109/03005368209081497
  3. L.F. Arenas, A. Loh, D.P. Trudgeon, X. Li, C. Ponce de Leon, F.C. Walsh, Renew. Sust. Energ. Rev., 2018, 90, 992-1016. https://doi.org/10.1016/j.rser.2018.03.016
  4. E. Deiss, F. Holzer, O. Haas, Electrochim. Acta, 2002, 47(25), 3995-4010. https://doi.org/10.1016/S0013-4686(02)00316-X
  5. B. Hwang, E.-S. Oh, K. Kim, Electrochim. Acta, 2016, 216, 484-489. https://doi.org/10.1016/j.electacta.2016.09.056
  6. Y. Mizutani, J. Appl. Polym. Sci., 1996, 61(5), 735-739. https://doi.org/10.1002/(SICI)1097-4628(19960801)61:5<735::AID-APP3>3.0.CO;2-P
  7. H. Omidian, S.A. Hashemi, P.G. Sammes, I. Meldrum, Polymer, 1999, 40(7), 1753-1761. https://doi.org/10.1016/S0032-3861(98)00394-2
  8. D. Lee, H.W. Kim, J.M. Kim, K.H. Kim, S.Y. Lee, ACS Appl. Mater. Interfaces, 2018, 10(26), 22210-22217. https://doi.org/10.1021/acsami.8b05215
  9. G.M. Wu, S.J. Lin, C.C. Yang, J. Membr. Sci., 2006, 280(1-2), 802-808. https://doi.org/10.1016/j.memsci.2006.02.037
  10. X. Zhu, H. Yang, Y. Cao, X. Ai, Electrochim. Acta, 2004, 49(16), 2533-2539. https://doi.org/10.1016/j.electacta.2004.02.008
  11. S. Liu, W. Han, B. Cui, X. Liu, F. Zhao, J. Stuart, S. Licht, J. Power Sources, 2017, 342, 435-441. https://doi.org/10.1016/j.jpowsour.2016.12.080
  12. A.L. Zhu, D. Duch, G.A. Roberts, S.X.X. Li, H.J. Wang, K. Duch, E. Bae, K.S. Jung, D. Wilkinson, S.A. Kulinich, ChemElectroChem, 2015, 2(1), 134-142. https://doi.org/10.1002/celc.201402251
  13. H. Yang, J. Power Sources, 2004, 128(1), 97-101. https://doi.org/10.1016/j.jpowsour.2003.09.050
  14. H.I. Kim, E.J. Kim, S.J. Kim, H.C. Shin, J. Appl. Electrochem., 2015, 45(4), 335-342. https://doi.org/10.1007/s10800-015-0793-4
  15. E. Malone, M. Berry, H. Lipson, Rapid Prototyping J., 2008, 14(3), 128-140. https://doi.org/10.1108/13552540810877987
  16. R. Thimmappa, M.C. Devendrachari, A.R. Kottaichamy, S. Aralekallu, M. Gautam, S.P. Shafi, Z. Manzoor Bhat, M.O. Thotiyl, J. Phys. Chem. C, 2017, 121(7), 3707-3713. https://doi.org/10.1021/acs.jpcc.6b11180
  17. J. Dobryszycki, S. Biallozor, Corros. Sci., 2001, 43(7), 1309-1319. https://doi.org/10.1016/S0010-938X(00)00155-4
  18. M. Liang, H. Zhou, Q. Huang, S. Hu, W. Li, J. Appl. Electrochem., 2011, 41(8), 991-997. https://doi.org/10.1007/s10800-011-0328-6
  19. A.A. Mohamad, J. Power Sources, 2006, 159(1), 752-757. https://doi.org/10.1016/j.jpowsour.2005.10.110
  20. S. Qu, Z. Song, J. Liu, Y. Li, Y. Kou, C. Ma, X. Han, Y. Deng, N. Zhao, W. Hu, C. Zhong, Nano Energy, 2017, 39, 101-110. https://doi.org/10.1016/j.nanoen.2017.06.045
  21. M.J. Tan, B. Li, P. Chee, X. Ge, Z. Liu, Y. Zong, X.J. Loh, J. Power Sources, 2018, 400, 566-571. https://doi.org/10.1016/j.jpowsour.2018.08.066
  22. H.F. Wang, C. Tang, B. Wang, B.Q. Li, X. Cui, Q. Zhang, Energy Storage Mater., 2018, 15, 124-130.
  23. M. Kar, B. Winther-Jensen, M. Armand, T.J. Simons, O. Winther-Jensen, M. Forsyth, D.R. MacFarlane, Electrochim. Acta, 2016, 188, 461-471. https://doi.org/10.1016/j.electacta.2015.12.050
  24. W. Ni, S. Liu, C. Du, Y. Fei, Y. He, X. Ma, L. Lu, Y. Deng, Int. J. Hydrogen Energy, 2017, 42(30), 19019-19027. https://doi.org/10.1016/j.ijhydene.2017.06.194
  25. S.Z. Liu, W. Han, B.C. Cui, X.J. Liu, F.L. Zhao, J. Stuart, S. Licht, J. Power Sources, 2017, 342, 435-441. https://doi.org/10.1016/j.jpowsour.2016.12.080
  26. S. Wang, J. Qin, T. Meng, M. Cao, Nano Energy, 2017, 39, 626-638. https://doi.org/10.1016/j.nanoen.2017.07.043
  27. J. Bai, T. Meng, D. Guo, S. Wang, B. Mao, M. Cao, ACS Appl. Mater. Interfaces, 2018, 10(2), 1678-1689. https://doi.org/10.1021/acsami.7b14997
  28. A.R. Mainar, E. Iruin, L.C. Colmenares, A. Kvasha, I. de Meatza, M. Bengoechea, O. Leonet, I. Boyano, Z. Zhang, J.A. Blazquez, J. Energy Storage, 2018, 15, 304-328. https://doi.org/10.1016/j.est.2017.12.004
  29. B. Amini Horri, M. Choolaei, A. Chaudhry, H. Qaalib, Int. J. Hydrogen Energy, 2019, 44(1), 72-81. https://doi.org/10.1016/j.ijhydene.2018.03.048