DOI QR코드

DOI QR Code

A Self-standing and Binder-free Electrodes Fabricated from Carbon Nanotubes and an Electrodeposited Current Collector Applied in Lithium-ion Batteries

  • Luais, Erwann (Laboratoire de Physico-Chimie des Materiaux et des Electrolytes pour l'Energie (PCM2E), Universite de Tours) ;
  • Mery, Adrien (Groupe de Recherche En Materiaux, Microelectronique, Acoustique et Nanotechnologies (GREMAN)) ;
  • Abou-Rjeily, John (Laboratoire de Physico-Chimie des Materiaux et des Electrolytes pour l'Energie (PCM2E), Universite de Tours) ;
  • Sakai, Joe (Groupe de Recherche En Materiaux, Microelectronique, Acoustique et Nanotechnologies (GREMAN)) ;
  • Tran-Van, Francois (Laboratoire de Physico-Chimie des Materiaux et des Electrolytes pour l'Energie (PCM2E), Universite de Tours) ;
  • Ghamouss, Fouad (Laboratoire de Physico-Chimie des Materiaux et des Electrolytes pour l'Energie (PCM2E), Universite de Tours)
  • Received : 2018.12.11
  • Accepted : 2019.05.30
  • Published : 2019.12.31

Abstract

In this paper, we report the preparation of a flexible, self-standing and binder-free carbon nanotubes (CNTs) electrode with an electro-generated current collector. The copper current collector layer was electrodeposited on the backside of CNTs self-standing film obtained by a simple filtration process. The obtained CNTs-Cu assembly was used as a negative electrode in Li-ion batteries exhibiting good performance along with proving its applicability in flexible batteries.

Acknowledgement

Supported by : Region Centre

References

  1. A. Yoshino, K. Sanechika, and T. Nakajima, United States Patent 4, 668, 595. 1987.
  2. M. Yoshio, R.J. Brodd, A. and Kozawa. Lithium-ion batteries: Science and technologies, 1st Ed., Springer New York, 115-154, 2009.
  3. S. Iijima, Nature, 1991, 354(6348), 56-58. https://doi.org/10.1038/354056a0
  4. Z. Xiong, Y. Yun, and H.J. Jin, Materials(Basel), 2013, 6(3), 1138-1158. https://doi.org/10.3390/ma6031138
  5. D. Qian, G.J Wagner, W.K. Liu, M.F Yu, and R.S Ruoff, Appl. Mech. Rev. 2002, 55(6), 495-533. https://doi.org/10.1115/1.1490129
  6. H. Dai, Carbon nanotubes: Opportunities and challenges. Surf. Sci., 2002, 500(1-3), 218-241. https://doi.org/10.1016/S0039-6028(01)01558-8
  7. B.J. Landi, M.J Ganter, C.D. Cress, R.A. DiLeo, and R.P. Raffaelle, Energy Environ. Sci. 2009, 2(6), 638-654. https://doi.org/10.1039/b904116h
  8. B. Song, J. Yang, J. Zhao, and H. Fang, Energy Environ. Sci. 2011, 4(4), 1379-1384. https://doi.org/10.1039/c0ee00473a
  9. J.M. Tarascon, and M. Armand, Nature, 2001, 414(6861), 359-367. https://doi.org/10.1038/35104644
  10. S.H. Ng, J. Wang, Z.P Guo, J. Chen, G.X Wang, and H.K Liu, Electrochim. Acta 2005, 51(1), 23-28. https://doi.org/10.1016/j.electacta.2005.04.045
  11. S.L. Katar, J. DeJesus, B.R. Weiner, and G. Morell, J. Electrochem. Soc. 2008, 155(2), A125-A128. https://doi.org/10.1149/1.2815675
  12. Chew, S. Y. et al. Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon N. Y, 2009, 47(13), 2976-2983. https://doi.org/10.1016/j.carbon.2009.06.045
  13. C. Kang, E. Cha, R. Baskaran, and W. Choi, Nanotechnology, 2006, 27(10), 105402-105409. https://doi.org/10.1088/0957-4484/27/10/105402
  14. K.S Park, K.M Min, S.D. Seo, G.H. Lee, H.W Shim, and D.W. Kim, Mater. Res. Bull. 2013, 48(4), 1732-1736. https://doi.org/10.1016/j.materresbull.2012.12.067
  15. C. Subramaniam, T. Yamada, K. Kobashi, A. Sekiguchi, D.N. Futaba, M. Yumura, and K. Hata, Nat. Commun. 2013, 4, 1-7.
  16. P.M. Hannula, A. Peltonen, J. Aromaa, D. Janas, M. Lundstrom, B.P. Wilson, K. Koziol, and O. Forsen, Carbon N. Y. 2016, 107, 281-287. https://doi.org/10.1016/j.carbon.2016.06.008
  17. P. Sehrawat, C. Julien, and S.S Islam, Mater. Sci. Eng. B. 2016, 213, 12-40. https://doi.org/10.1016/j.mseb.2016.06.013
  18. L. Noerochim, J.Z. Wang, S.L. Chou, D. Wexler, and H.K. Liu, Carbon N. Y. 2012, 50(3), 1289-1297. https://doi.org/10.1016/j.carbon.2011.10.049
  19. H.C. Shin, M. Liu, B. Sadanadan, and A.M. Rao, J. Power Sources 2002, 112(1), 216-221. https://doi.org/10.1016/S0378-7753(02)00366-X
  20. A. Varzi, C. Taubert, M. Wohlfahrt-Mehrens, M. Kres, and W. Schutz, J. Power Sources 2011, 196(6), 3303-3309. https://doi.org/10.1016/j.jpowsour.2010.11.101
  21. H. Huang, W.K. Zhang, and X.P. Gan,. Mater. Chem. Phys. 2007, 104(2-3), 271-275 . https://doi.org/10.1016/j.matchemphys.2007.02.095
  22. M. Dahbi, F. Ghamouss, F. Tran-Van, D. Lemordant, and M. Anouti, J. Power Sources, 2011, 196(22), 9743-9750. https://doi.org/10.1016/j.jpowsour.2011.07.071
  23. C. Wang, A. J. Appleby, and F.E, Electrochimica acta, 2001, 46(12), 1793-1813. https://doi.org/10.1016/S0013-4686(00)00782-9