Phylogenetics, Safety and In Vitro Functional Properties of Bacillus Species Isolated from Iru, a Nigerian Fermented Condiment

  • Received : 2019.03.08
  • Accepted : 2019.06.03
  • Published : 2019.12.28


Bacillus species were isolated from iru, a traditional fermented condiment in Nigeria. Polyphasic approach was used to evaluate the phylogenetic relationship and strain sub-type of the isolated species. Additionally, the phylogenetic profiles of the species isolated from iru were compared with those of bacilli isolated from different continents. The phylogenetic diversity analysis was performed using the combination of 16S rRNA gene sequencing, ITS-PCR, ITS-PCR-RFLP, and M13 RAPD-PCR. The analysis revealed that Bacillus subtilis U170B and B. subtilis U146A isolated from iru were the closest relatives of strains belonging to the phylogeny of B. subtilis sensu stricto and were related to other bacilli isolated from different continents that had functional benefits. The two isolated species exhibited resistance to acidic pH (pH 2.0). The survival rates of B. subtilis U170B, B. subtilis U146A, and B. clausii UBBC-07 (commercial probiotic strain) cultured at pH 2.0 for 3 h were 33.45, 12.44, and 9.53%, respectively. The strains were highly tolerant to bile salts [0.3% (w/v)]. B. subtilis U170B exhibited the highest cell viability (43.45%) when cultured for 3 h in the presence of bile salts, followed by B. subtilis U146A (25%) and B. clausii UBBC-07 (18.94%). B. subtilis U170B and B. subtilis U146A did not exhibit haemolytic activity and were susceptible to different antibiotics. Additionally, these two strains exhibited weak antagonistic activity against B. cereus. The diverse wild strains of B. subtilis can be used as a safe multifunctional starter culture for the industrial production of condiments with health benefits.


Supported by : Central Research Committee, (CRC), University of Lagos


  1. Odunfa SA. 1986. Dawadawa. In Reddy NR, Pierson MD, Salunkhe DK (eds.), pp. 173-189. Legume-based Fermented Foods. CRC Press, Boca Raton, Florida.
  2. Kubo Y, Rooney AP, Tsukakoshi Y, Nakagawa Y, Hasegawa H, Kimura K. 2011. Phylogenetic analysis of Bacillus subtilis strains applicable to natto (fermented soybean) production. Appl. Environ. Microbiol. 77: 6463-6469.
  3. Leejeerajumnean A, Duckham SC, Owens DJ, Ames JM. 2001. Volatile compounds in Bacillus-fermented soybeans. J. Sci. Food Agric. 81: 525-529.
  4. Dahal NR, Karki TB, Swamylingappa B, Li Q, Gu GX. 2005. Traditional foods and beverages of Nepal: a review. Food Rev. Int. 21: 1-25.
  5. Chettri R, Tamang JP. 2015. Bacillus species isolated from tungrymbai and bekang, naturally fermented soybean foods of India. Int. J. Food Microbiol. 197: 72-76.
  6. Odunfa SA, Oyewole OB. 1998. African fermented foods. pp. 712-752. In Wood BJB (ed.), Microbiology of Fermented Foods, 2nd Ed.Vol. 2. Blackie Academic and Professional, London, UK.
  7. Ouoba LII, Diawara B, Amoa-Awua WK, Traore AS, Moller PL. 2004. Genotyping of starter cultures of Bacillus subtilis and Bacillus pumilus for fermentation of African locust bean (Parkia biglobosa) to produce Soumbala. Int. J. Food Microbiol. 90: 197-205.
  8. Ouoba LII, Diawara B, Amoa-Awua WK, Traore AS, Moller PL. 2004. Genotyping of starter cultures of Bacillus subtilis and Bacillus pumilus for fermentation of African locust bean (Parkia biglobosa) to produce Soumbala. Int. J. Food Microbiol. 90: 197-205.
  9. Ademola OM, Adeyemi TE, Ezeokoli OT, Ayeni KI, Obadina AO, Somorin YM, et al. 2018. Phylogenetic analyses of bacteria associated with the processing of iru and ogiri condiments. Lett. Appl. Microbiol. 67: 354-362.
  10. Adewumi GA, Oguntoyinbo FA, Keisam S, Romi W, Jeyaram K. 2013. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds. Front. Microbiol. 3: 436.
  11. Sorokulova IB, Pinchuk IV, Denayrolles M, Osipova IG, Huang JM, Cutting SM, et al. 2008. The safety of two Bacillus probiotic strains for human use. Dig. Dis. Sci. 53: 954-963.
  12. Tam NKM, Uyen NQ, Hong HA, Duc LH, Hoa TT, Serra CR, et al. 2006. The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188: 2692-2700.
  13. Cartman ST, La Ragione RM, Woodward MJ. 2008. Bacillus subtilis spores germinate in the chicken gastrointestinal tract. Appl. Environ. Microbiol. 74: 5254-5258.
  14. Leser TD, Knarreborg A, Worm J. 2008. Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs. J. Appl. Microbiol. 104: 1025-1033.
  15. Shinde T, Vemuri R, Shastri MD, Perera AP, Tristram S, Stanley R, et al. 2019. Probiotic Bacillus coagulans MTCC 5856 spores exhibit excellent in-vitro functional efficacy in simulated gastric survival, mucosal adhesion and immunomodulation. J. Funct. Foods 52: 100-108.
  16. Cutting SM. 2011. Bacillus probiotics. Food Microbiol. 28: 214-220.
  17. Adewumi GA, Oguntoyinbo FA, Romi W, Singh TA, Jeyaram K. 2014. Genome sub-typing of autochthonous Bacillus species isolated from iru, a fermented Parkia biglobosa seeds. Food Biotechnol. 28: 250-268.
  18. Jeyaram K, Romi W, Singh TA, Adewumi GA, Basanti K, Oguntoyinbo FA. 2011. Distinct differentiation of closely related species of Bacillus subtilis group with industrial importance. J. Microbiol. Methods. 87: 161-164.
  19. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
  20. Escalante A, Wacher C, Farres A. 2001. Lactic acid bacterial diversity in the traditional Mexican fermented dough pozol as determined by 16S rDNA sequence analysis. Int. J. Food Microbiol. 64: 21-31.
  21. Lechner S, Mayr R, Francis KP, Pruss BM, Kaplan T, Wiessner-Gunkel E, et al. 1998. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int. J. Syst. Bacteriol. 48: 1373-1382.
  22. Rohlf FJ. 1998. NTSYSpc., 'Numerical taxonomy and multivariate analysis system', version 2.20e, Exeter Software, New York.
  23. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.
  24. Thompson JD, Higgins DG, Gibson TJ. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
  25. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
  26. Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  27. Nei M, Kumar S. 2000. Molecular evolution and phylogenetics. New York (NY): Oxford University Press.
  28. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
  29. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874.
  30. Duc LH, Hong HA, Barbosa TM, Henriques AO, Cutting SM. 2004. Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 70: 2161-2171.
  31. Nicholson WL, Setlow P. 1990. Sporulation, germination and outgrowth. pp. 391-450. In Harwood CR, Cutting SM (eds.), Molecular Biological Methods for Bacillus. John Wiley & Sons Limited, Chichester, UK.
  32. Schillinger U, Lucke FK. 1989. Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol. 55: 1901-1906.
  33. Pugsley AP. 1985. Escherichia coli K12 strains for use in the identification and characterization of colicins. J. Gen. Microbiol. 131: 369-376.
  34. Wang Y, Zhang H, Zhang L, Liu W, Zhang Y, Zhang X, et al. 2010. In vitro assessment of probiotic properties of Bacillus isolated from naturally fermented congee from Inner Mongolia of China. World J. Microbiol. Biotechnol. 26: 1369-1377.
  35. De Vuyst L, Foulquié Morenoa MR, Revets H. 2003. Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int. J. Food Microbiol. 84: 299-318.
  36. Clinical and Laboratory Standards Institute (CLSI). 2009. Performance standards for antimicrobial susceptibility testing: Nineteenth informational supplement. pp. 149. Clinical and laboratory standards institute, Wayne.
  37. Oguntoyinbo FA, Huch M, Cho G-S, Schillinger U, Holzapfel W, Sanni AI, et al. 2010. Diversity of Bacillus species isolated from okpehe, a traditional fermented soup condiment of Nigeria. J. Food Prot. 73: 870-878.
  38. Fernández S, Ayora S, Alonso JC. 2000. Bacillus subtilis homologous recombination: genes and products. Res. Microbiol. 151: 481-486.
  39. Meerak J, Yukphan P, Miyashita M, Sato H, Nakagawa Y, Tahara Y. 2008. Phylogeny of gamma-polyglutamic acid-producing Bacillus strains isolated from a fermented locust bean product manufactured in West Africa. J. Gen. Appl. Microbiol. 54: 159-166.
  40. Prieto ML, O'Sullivan L, Tan SP, McLoughlin P, Hughes H, Gutierrez M, et al. 2014. In vitro assessment of marine Bacillus for use as livestock probiotics. Mar. Drugs 12: 2422-2445.
  41. Zhang Y, Zhang L, Du M, Yi H, Guo C, Tuo Y, et al. 2011. Antimicrobial activity against Shigella sonnei and probiotic properties of wild lactobacilli from fermented food. Microbiol. Res. 167: 27-31.
  42. Cai Y, Yuan W, Wang S, Guo W, Li A, Wu Y, et al. 2019. In vitro screening of putative probiotics and their dual beneficial effects: To white shrimp (Litopenaeus vannamei) postlarvae and to the rearing water. Aquac. 498: 61-71.
  43. Toure R, Kheadr E, Lacroix C, Moroni O, Fliss I. 2003. Production of antibacterial substances by bifidobacterial isolates from infant stool active against Listeria monocytogenes. J. Appl. Microbiol. 95: 1058-1069.
  44. European Food Safety Association (EFSA). 2005. Opinion of the Scientific Committee on a request from EFSA related to a generic approach to the safety assessment by EFSA of microorganisms used in feed/food and the production of feed/food additives. Euro. Food Safety Authority 226: 1-12.
  45. Green DH, Wakeley PR, Page A, Barnes A, Baccigalupi L, Ricca E, et al. 1999. Characterization of two Bacillus probiotics. Appl. Environ. Microbiol. 65: 4288-4291.
  46. Hoa NT, Baccigalupi L, Huxham A, Smertenko A, Van PH, Ammendola S, et al. 2000. Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl. Environ. Microbiol. 66: 5241-5247.
  47. Vankerckhoven V, Huys G, Vancanneyt M, Vael C, Klare I, Romond MB, et al. 2008. Biosafety assessment of probiotics used for human consumption: recommendations from the EU-PROSAFE project. Trends Food Sci. Technol. 19: 102-114.