DOI QR코드

DOI QR Code

Vortex induced vibration analysis of a cylinder mounted on a flexible rod

  • Zamanian, Mehdi (Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University) ;
  • Garibaldi, Luigi (Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino)
  • Received : 2019.03.18
  • Accepted : 2019.06.28
  • Published : 2019.12.25

Abstract

In this study, vortex induced vibrations of a cylinder mounted on a flexible rod are analyzed. This simple configuration represents the key element of new conception bladeless wind turbine (Whitlock 2015). In this study the structure oscillations equation coupled to the wake oscillation equation for this configuration are solved using analytical perturbation method, for the first time. An analytical expression that predicts the lock-in phenomena range of wind speed is derived. The discretized equations of motion are also solved using RKF45 numerical method. The equations of motion are discretized by Galerkin method. Free vibration mode shape of the structure taking into account the discontinuity of the cross section are used as comparison function. Numerical results are compared to the analytical results, and they show a satisfying agreement. The effect of system parameters on the oscillations of structure and wake as well as on the lock-in domain are presented. Moreover, it is shown that the values of wind speed triggering the start and the stop of the lock-in phenomenon, for increasing wind speed are different from those values obtained during the reverse process, i.e., when the wind speed decreases.

References

  1. Abdelkefi, A., Yan, Z. and Hajj, M.R. (2013), "Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping", Smart Mater Struct., 22(1), 025016.
  2. Abdul Nariman, N. (2016), "Influence of fluid-structure interaction on vortex induced vibration and lock-in phenomena in long span bridges", Front Struct. Civ. Eng., 10(4), 363-384. https://doi.org/10.1007/s11709-016-0353-y.
  3. Bearman, P.W. (1984), "Vortex shedding from oscillating bluff Bodies", Annu. Rev. Fluid Mech., 16, 195-222.
  4. Bernitsas, M. M., Raghavan, K., Ben-Simon, Y. and Garcia, E.M.H. (2008), "VIVACE (vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow", J. Offshore Mech. Arct., 130(4), 041101-15. https://doi.org/10.1115/1.2957913.
  5. Blevins, R.D. (1990), Flow-Induced Vibration, (2th Ed.), Van Nostrand Reinhold, New York.
  6. Chaplin, J.R., Bearman, P.W., Huera Huarte, F.J. and Pattenden, R.J. (2005), "Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current", J. Fluid Struct., 21(1), 3-24. https://doi.org/10.1016/j.jfluidstructs.2005.04.010.
  7. Chizfahm, A., Azadi Yazdi, E. and Eghtesad, M. (2018), "Dynamic modeling of vortex induced vibration wind turbines", Renew Energ, 121(1), 632-643. https://doi.org/10.1016/j.renene.2018.01.038.
  8. Dai, H.L, Yang, Y.W., Abdelkefi, A. and Wang, L. (2018), "Nonlinear analysis and characteristics of inductive galloping energy harvesters", Commun. Nonlinear Sci. Numer. Simulat, 59(1), 580-591. https://doi.org/10.1016/j.cnsns.2017.12.009.
  9. Dai, H.L., Abdelkefi, A. and Wang, L. (2014), "Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations", Nonlinear Dynam, 77(3) 967-981. https://doi.org/10.1007/s11071-014-1355-8.
  10. de Langre, E. (2006) , "Frequency lock-in is caused by coupledmode flutter", J. Fluid Struct., 22(6-7), 783-791. https://doi.org/10.1016/j.jfluidstructs.2006.04.008.
  11. Facchinetti, M.L., de Langre, E. and Biolley, F. (2004), "Coupling of structure and wake oscillators in vortex-induced vibrations", J Fluid Struct., 19(2), 123-140. https://doi.org/10.1016/j.jfluidstructs.2003.12.004,
  12. Facchinetti, M.L., de Langre, E. and Biolley, F. (2004), "Vortexinduced travelling waves along a cable", Eur. J. Mech. B-Fluid., 23(1), 199-208. https://doi.org/10.1016/j.euromechflu.2003.04.004.
  13. Farshidianfar, A. and Zanganeh, H. (2010), "A modified wake oscillator model for vortex-induced vibration of circular cylinders for a wide range of mass-damping ratio", J. Fluid Struct., 26(3), 430-441. https://doi.org/10.1016/j.jfluidstructs.2009.11.005.
  14. Gao, X., Xu, W., Bai, Y. and Zhu, H. (2018), "A novel wake oscillator model for vortex-induced vibrations prediction of a cylinder considering the influence of Reynolds number", China Ocean Eng., 32(2), 132-143. https://doi.org/10.1007/s13344-018-0015-z.
  15. Griffin, O.M., Skop, R.A. and Koopmann, G.H. (1973), "The vortex-excited resonant vibrations of circular cylinders", J Sound Vib, 31(2), 235-249. https://doi.org/10.1016/S0022-460X(73)80377-3.
  16. Ji, C., Peng, Z., Mahbub Alam, M., Chen, W. and Xu, D. (2018), "Vortex-induced vibration of a long flexible cylinder in uniform cross-flow", Wind Struct., 26(5), 267-277. https://doi.org/10.12989/was.2018.26.5.267.
  17. Jia, J., Shan, X., Upadrashta, D., Xie, T., Yang, Y. and Song, R. (2018), "Modeling and analysis of upright piezoelectric energy harvester under aerodynamic vortex-induced vibration", Micromachines, 9(1), 667(19pp). https://doi.org/10.3390/mi9120667.
  18. Keber, M. and Wiercigroch, M.A. (2007), "reduced order model for vortex-induced vibration of a vertical offshore riser in lock-in", IUTAM Symposium on Fluid-Structure Interaction in Ocean, Humburg, Germany.
  19. Kurushina, V. and Pavlovskaia, E. (2017), "Wake oscillator equations in modeling vortex-induced vibrations at low mass ratios", OCEANS 2017, Aberdeen, UK.
  20. Leblond, A. and Hardy, C. (2005), "Unifying calculation of vortex-induced vibrations of overhead conductors", Wind Struct. , 8(2), 79-88. http://dx.doi.org/10.12989/was.2005.8.2.079.
  21. Leclercq, T. and de Langre, E. (2018), "Vortex-induced vibrations of cylinders bent by the flow", J. Fluid Struct., 80(1), 77-93. https://doi.org/10.1016/j.jfluidstructs.2018.03.008.
  22. Mathelin, L. and de Langre, E. (2005), "Vortex-induced vibrations and waves under shear flow with a wake oscillator model", Eur. J. Mech. B-Fluid., 24(4), 478-490. https://doi.org/10.1016/j.euromechflu.2004.12.005.
  23. Ogink, R.H.M. and Metrikine, A.V. (2010), "A wake oscillator with frequency dependent coupling for the modeling of vortexinduced vibration", J. Sound Vib., 329(26), 5452-5473. https://doi.org/10.1016/j.jsv.2010.07.008.
  24. Postnikov, A., Pavlovskaia, E. and Wiercigroch, M. (2017), "2DOF CFD calibrated wake oscillator model to investigate vortex-induced vibrations", Int. J. Mech. Sci., 127(1), 176-190. https://doi.org/10.1016/j.ijmecsci.2016.05.019.
  25. Qu, Y. and Metrikine, A.V. (2016), "A wake oscillator model with nonlinear coupling for the VIV of rigid cylinder constrained to vibrate in the cross flow direction", Proceedings of the 35th International Conference on Ocean, Offshore and Arctic Engineering, Busan, South Korea.
  26. Salvador, C.S., Teresa, J.A., Martinez, J.M., Bacasnot, M.C., Orilla, K.V., Cabana, R.J. and Ladaran, W.I. (2017), "design and construction of arc shaped and disc shaped pendulum for vortex bladeless wind generator", Proceedings of the 25th International Conference on Systems Engineering, Las Vegas, USA.
  27. Skop, R.A. and Balasubramanian, S. (1997), "A new twist on an old model for vortex-excited vibrations", J. Fluid Struct., 11(4), 395-412. https://doi.org/10.1006/jfls.1997.0085.
  28. Skop, R.A. and Griffin, O.M. (1973), "A model for the vortexexcited resonant response of bluff cylinders", J. Sound Vib., 27(2), 225-233.
  29. Skop, R.A. and Luo, G. (2001), "An inverse-direct method for predicting the vortex-induced vibrations of cylinders in uniform and nonuniform flows", J. Fluid Struct., 15(6), 867-884. https://doi.org/10.1006/jfls.2000.0381.
  30. Song, R., Shan, X., Lv, F. and Xie, T. (2015), "A study of vortexinduced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension", Ceram Int., 41(1), 768-773. https://doi.org/10.1016/j.ceramint.2015.03.262.
  31. Sun, Y., Li, M. and Liao, H. (2013), "Investigation on vortexinduced vibration of a suspension bridge using section and full aeroelastic wind tunnel tests", Wind Struct., 17(6), 565-587. https://doi.org/10.12989/was.2013.17.6.565.
  32. Vandiver, J.K., Jaiswal, V. and Jhingran, V. (2009), "Insights on vortex-induced, traveling waves on long risers", J. Fluid Struct., 25(4), 641-653. https://doi.org/10.1016/j.jfluidstructs.2008.11.005.
  33. Violette, R., de Langre, E. and Szydlowski, J. (2007), "Computation of vortex-induced vibrations of long structures using a wake oscillator model: Comparison with DNS and experiments", Comput. Struct., 85(11-14), 1134-1141. https://doi.org/10.1016/j.compstruc.2006.08.005.
  34. Wang, D., Chen, Y., Wiercigroch, M. and Cao, Q. (2016), "A three-degree-of-freedom model for vortex-induced vibrations of turbine blades", Meccanica, 51(11), 2607-2628. https://doi.org/10.1007/s11012-016-0381-7.
  35. Wang, D., Chen, Y., Wiercigroch, M. and Cao, Q. (2016), "Bifurcation and dynamic response analysis of rotating blade excited by upstream vortices", Appl. Math. Mech., 37(9), 1251-1274. https://doi.org/10.1007/s10483-016-2128-6.
  36. Whitlock, R. (2015), The Power of the Vortex: an Interview, Renewable energy magazine, April.
  37. Xu, W., Wu, Y., Zeng, X., Zhong, X. and Yu, J. (2010), "A new wake oscillator model for predicting vortex induced vibration of a circular cylinder", J. Hydrodyn., 22(3), 381-386. https://doi.org/10.1016/S1001-6058(09)60068-8.
  38. Zhang, L.B., Dai, H.L., Abdelkefi, A. and Wang, L. (2019), "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections", Energy, 167(15), 970-981. https://doi.org/10.1016/j.energy.2018.11.059.