Effects of interface stiffness on dynamic behavior of connections between vertical shafts and tunnels under earthquake

지진 시 공동구용 수직구-터널 접속부 거동에 대한 경계면 강성 계수의 영향

  • Kim, Jung-Tae (Dept. of Civil and Environmental Engineering, KAIST) ;
  • Hong, Eun-Soo (Dept. of Civil and Environmental Engineering, Kongju National University) ;
  • Kang, Seok-Jun (Dept. of Civil and Environmental Engineering, KAIST) ;
  • Cho, Gye-Chun (Dept. of Civil and Environmental Engineering, KAIST)
  • 김정태 (한국과학기술원 건설 및 환경공학과) ;
  • 홍은수 (국립공주대학교 건설환경공학부 토목환경공학전공) ;
  • 강석준 (한국과학기술원 건설 및 환경공학과) ;
  • 조계춘 (한국과학기술원 건설 및 환경공학과)
  • Received : 2019.09.23
  • Accepted : 2019.10.19
  • Published : 2019.11.30


A great interest in the seismic performance evaluation of small size tunnel structures such as utility tunnel has been taken since recent earthquakes at Pohang and Gyeongju in Korea. In this study, the three-dimensional dynamic analyses of vertical shaft and horizontal tunnel under seismic load were carried out using FLAC3D. Especially, parametric analyses was performed to investigate the effects of interfacial stiffness on interfacial behavior between soil and structure. The parametric analysis showed that the interfacial stiffness scarcely gave an effect on the global dynamic behavior of the structure, while had a significant effect on the local displacement behavior of the connections. The magnitude of the interfacial stiffness was inversely proportional to the displacement, while the magnitude of interface stiffness was proportional to the normal and shear stresses. The results of this study suggest the limitations of the existing empirical equations for interfacial stiffness and emphasize the need to develop new interfacial stiffness models.

최근 발생한 포항과 경주 지진 이후 공동구와 같은 소단면 터널 구조물에 대한 내진 성능 평가에 대한 관심이 증가하고 있다. 이 연구에서는 유한 차분법 기반의 FLAC3D를 사용하여 지진 하중에 대한 수직구와 수평 터널 구조물에 대한 3차원 동적 해석을 수행하였다. 특히 지반과 구조물 사이 경계면 특성을 고려한 지반-구조물 상호 해석 시 중요 인자인 경계면 강성 계수의 영향을 분석하기 위한 매개변수 해석을 수행하였다. 매개변수 해석을 통해 경계면 강성 계수는 지하 구조물의 전체 동적 거동에는 큰 영향을 미치지 않지만 접속부의 국부적인 변위 거동에는 큰 영향을 미치는 것을 확인 할 수 있었다. 경계면 강성계수의 크기는 접속부에서의 변위와 반비례하는 경향을 보였으며, 수직 응력 및 전단 응력에 대해서는 비례하는 경향을 확인하였다. 연구 결과 수치 해석에서 주로 사용되고 있는 경계면 강성 계수에 대한 경험적 식의 한계를 제시할 수 있었으며, 새로운 경계면 강성 계수 모델 개발의 필요성을 확인하였다.



Grant : 도심지 소단면(ø3.5 m급) 터널식 공 동구 설계 및 시공 핵심기술 개발

Supported by : 국토교통부


  1. Aguilar-Tellez, M.A., Mendez-Marroquin, R., Rangel-Nunez, J.L., Comulada-Simpson, M., Maidl, U., Auvinet-Guichard, G. (2012), "Mexico City deep eastern drainage tunnel", Proceedings of the 7th International Symposium TC28 IS: Geotechnical Aspects of Underground Construction in Soft Ground, Vol. 1, London, pp.175-191.
  2. Bandis, S.C., Lumsden, A.C., Barton, N.R. (1983), "Fundamentals of rock joint deformation", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 20, No. 6, pp. 249-268.
  3. Choi, W.Y., Park, J.D., Lee, S.W. (2014), "Influence of the joint stiffness on the segment design", Journal of Korean Tunnelling and Underground Space Association, Vol. 16, No. 1, pp. 63-74.
  4. Davy, P., Darcel, C., Le Goc, R., Mas Ivars, D. (2018), "Elastic properties of fractured rock masses with frictional properties and power law fracture size distributions", Journal of Geophysical Research: Solid Earth, Vol. 123, No. 8, pp. 6521-6539.
  5. Grigoli, F., Cesca, S., Rinaldi, A.P., Manconi, A., Lopez-Comino, J.A., Clinton, J.F., Westaway, R., Cauzzi, C., Dahm, T., Wiemer, S. (2018), "The November 2017 $M_w$ 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea", Science, Vol. 360, No. 6392, pp. 1003-1006.
  6. Itasca, F. (2013). Fast lagrangian analysis of continua in 3 dimensions, Online Manual.
  7. Jang, D.I., Kim, J.I., Kwak, C.W., Park, I.J. (2017), "Study on flexible segment efficiency for seismic performance improvement of subsea tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 3, pp. 503-515.
  8. Kim, J.T., Cho, G.C., Kang, S.J., Kim, K.J., Hong, E.S. (2018), "3-dimentional numerical study on dynamic behavior of connection between vertical shaft and tunnel under earthquake loading", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 5, pp. 887-897.
  9. Kim, Y.M., Jeong, S.S, Kim, K.Y., Lee, Y.H. (2011), "A study on the dynamic behavior of vertical shaft in multi-layered soil", Journal of the Korean Society of Civil Engineers, Vol. 31, No. 4C, pp. 109-116.
  10. Kim, Y.M., Jeong, S.S, Lee, Y.H., Jang, J.B. (2010), "Seismic design of vertical shaft using response displacement method", Journal of the Korean Society of Civil Engineers, Vol. 30, No. 6C, pp. 241-253.
  11. Kulhawy, F.H. (1975), "Stress deformation properties of rock and rock discontinuities", Engineering Geology, Vol. 9, No. 4, pp. 327-350.
  12. Li, W., Bai, J., Cheng, J., Peng, S.Y.D., Liu, H. (2015), "Determination of coal-rock interface strength by laboratory direct shear tests under constant normal load", International Journal of Rock Mechanics and Mining Sciences, Vol. 77, pp. 60-67.
  13. Likar, J., Marolt, T., Grov, E. (2015), "Seismic influences on underground structures", Proceedings of the 13th ISRM International Congress of Rock Mechanics, Montreal, pp. 1-11.
  14. Mylonakis, G., Gazetas, G. (2000), "Seismic soil-structure interaction: beneficial or detrimental?", Journal of Earthquake Engineering, Vol. 4, No. 3, pp. 277-301.
  15. Ohbo, K., Ueno, K. (1992), "Dynamic behavior of super deep vertical shaft during earthquake", Proceedings of the 10th World Conference, Madrid, pp. 5031-5036.
  16. Pitilakis, D., Dietz, M., Wood, D.M., Clouteau, D., Modaressi, A. (2008), "Numerical simulation of dynamic soil-structure interaction in shaking table testing", Soil Dynamics and Earthquake Engineering, Vol. 28, No. 6, pp. 453-467.
  17. Rayhani, M.H., El Naggar, M.H. (2008), "Numerical modeling of seismic response of rigid foundation on soft soil", International Journal of Geomechanics, Vol. 8, No. 6, pp. 336-346.
  18. Rosso, R.S. (1976), "A comparison of joint stiffness measurements in direct shear, triaxial compression, and in situ", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 13, No. 6, pp. 167-172.
  19. Sawada, M., Haba, K., Hori, M. (2018), "Estimation of surface fault displacement by high performance computing", Journal of Earthquake and Tsunami, Vol. 12, No. 4, 1841003.
  20. Saxena, N., Paul, D.K. (2012), "Effects of embedment including slip and separation on seismic SSI response of a nuclear reactor building", Nuclear Engineering and Design, Vol. 247, pp. 23-33.
  21. Saxena, N., Paul, D.K., Kumar, R. (2011), "Effects of slip and separation on seismic SSI response of nuclear reactor building", Nuclear Engineering and Design, Vol. 241, No. 1, pp. 12-17.
  22. Seed, H.B., Idriss, I.M. (1970), Soil moduli and damping factors for dynamic response analyses, Report No. UCB/EERC-70/10, Earthquake Research Center, University of California, Berkeley, pp. 48.
  23. Tuladhar, R., Maki, T., Mutsuyoshi, H. (2008), "Cyclic behavior of laterally loaded concrete piles embedded into cohesive soil", Earthquake Engineering and Structural Dynamics, Vol. 37, No. 1, pp. 43-59.
  24. Yamazaki, Y., Segawa, N., Koizumi, A. (2013), "Evaluation of earthquake resistance of shield-tunnel/vertical-shaft connections and countermeasure technology", NTT Technical Review, Vol. 11, No. 1, pp. 1-6.
  25. Yu, Y., Damians, I.P., Bathurst, R.J. (2015), "Influence of choice of FLAC and PLAXIS interface models on reinforced soil-structure interactions", Computers and Geotechnics, Vol. 65, pp. 164-174.