Confluent Hypergeometric Distribution and Its Applications on Certain Classes of Univalent Functions of Conic Regions

  • Received : 2016.05.27
  • Accepted : 2018.08.06
  • Published : 2018.09.23


The purpose of the present paper is to investigate Confluent hypergeometric distribution. We obtain some basic properties of this distribution. It is worthy to note that the Poisson distribution is a particular case of this distribution. Finally, we give a nice application of this distribution on certain classes of univalent functions of the conic regions.


  1. R. Bharati, R Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike funcitons, Tamkang J. Math., 28(1997), 17-32.
  2. A. Gangadharan, T. N. Shanmugam and H. M. Srivastava, Generalized hypergeometric function associated with k-uniformly convex functions, Comput. Math. Appl., 44(2002), 1515-1526.
  3. A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56(1991), 87-92.
  4. A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl., 155(1991), 364-370.
  5. S. Kanas and H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Integral Transform. Spec. Funct., 9(2000), 121-132.
  6. S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput Appl. Math., 105(1999), 327-336.
  7. S. Kanas and A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45(2000), 647-657.
  8. W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math., 57(1992), 165-175.
  9. S. Ponnusamy and F. Rnning, Starlikeness properties for convolutions involving hypergeometric series, Ann. Univ. Mariae Curie-Sklodawska Sect. A, 52(1998), 141-155.
  10. S. Porwal, An application of a Poisson distribution series on certain analytic functions , J. Complex Anal., (2014), Art. ID 984135, 3 pp
  11. S. Porwal and S. Kumar, Confluent hypergeometric distribution and its applications on certain classes of univalent functions, Afr. Mat., 28(2017), 1-8.
  12. E. D. Rainville, Special functions, The Macmillan Co., New York, 1960.
  13. M. S. Robertson, On the theory of univalent functions, Ann. Math., 37(1936), 374-408.
  14. F. Rnning, Uniformly convex functions and a corresponding class of starlike functions , Proc. Amer. Math. Soc., 118(1)(1993), 189-196.
  15. H. M. Srivastava and A. K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Comput. Math. Appl., 39(2000), 57-69.
  16. D. Srivastava and S. Porwal, Some sufficient conditions for Poisson distribution series associated with conic regions, Int. J. Advanced Technology in Enginering Sci., 3(1)(2015), 229-236.
  17. A. Swaminathan, Certain sufficiency conditions on Gaussian hypergeometric functions, J. Inequal. Pure Appl. Math., 5(4)(2004), Article 83, 10 pp.