DOI QR코드

DOI QR Code

The Influence of Oxygen Gas Flow Rate on Growth of Tin Dioxide Nanostructures

이산화주석 나노구조물의 성장에서 산소가스 유량이 미치는 영향

  • Kim, Jong-Il (Department of Advanced Chemical Engineering, Mokwon University) ;
  • Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
  • 김종일 (목원대학교 신소재화학공학과) ;
  • 김기출 (목원대학교 신소재화학공학과)
  • Received : 2018.07.09
  • Accepted : 2018.10.05
  • Published : 2018.10.31

Abstract

Tin dioxide, $SnO_2$, is applied as an anode material in Li-ion batteries and a gas sensing materials, which shows changes in resistance in the presence of gas molecules, such as $H_2$, NO, $NO_2$ etc. Considerable research has been done on the synthesis of $SnO_2$ nanostructures. Nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in sensing gas molecules and improving the specific capacity of Li-ion batteries. In this study, $SnO_2$ nanostructures were grown on a Si substrate using a thermal CVD process with the vapor transport method. The carrier gas was mixed with high purity Ar gas and oxygen gas. The crystalline phase of the as-grown tin oxide nanostructures was affected by the oxygen gas flow rate. The crystallographic property of the as-grown tin oxide nanostructures were investigated by Raman spectroscopy and XRD. The morphology of the as-grown tin oxide nanostructures was confirmed by scanning electron microscopy. As a result, the $SnO_2$ nanostructures were grown directly on Si wafers with moderate thickness and a nanodot surface morphology for a carrier gas mixture ratio of Ar gas 1000 SCCM : $O_2$ gas 10 SCCM.

Keywords

tin dioxide;nanostructure;vapor transport method;chemical vapor deposition;oxygen flow rate

Acknowledgement

Supported by : 한국연구재단

References

  1. J. H. Kim, K. M. Jeon, J. S. Park, Y. C. Kang, "Excellent Li-ion storage performances of hierarchical SnO-$SnO_{2}$ composite powders and SnO nanoplates prepared by one-pot spray pyrolysis", Journal of Power Sources, Vol.359, pp.363-370, 2017. DOI: https://dx.doi.org/10.1016/j.jpowsour.2017.05.105 https://doi.org/10.1016/j.jpowsour.2017.05.105
  2. J. H. Shin, J. Y. Song, "Electrochemical properties of Sn-decorated SnO nanobranches as an anode of Li-ion battery", Nano Convergence, Vol.3, No.1, Aritlcle ID 9, 2016. DOI: https://dx.doi.org/10.1186/s40580-016-0070-1
  3. L. Zhang, H. B. Wu, X. W. Lou, "Growth of $SnO_{2}$ nanosheet arrays on various conductive substrates as integrated electrode for lithium-ion batteries", Materials Horizons, Vol.1, pp.133-138, 2014. DOI: https://dx.doi.org/10.1039/C3MH00077J https://doi.org/10.1039/C3MH00077J
  4. S. Maeng, S. W. Kim, D. H. Lee, S. E. Moon, K. C. Kim, A. Maiti, "$SnO_{2}$ Nanoslab as $NO_{2}$ Sensor: Identification of the $NO_{2}$ Sensing Mechanism on a $SnO_{2}$ Surface", ACS Applied Materials and Interfaces, Vol.6, No.1, pp.357-363, 2014. DOI: https://dx.doi.org/10.1021/am404397f https://doi.org/10.1021/am404397f
  5. L. Mei, Y. Chen. J. Ma, "Gas Sensing of $NO_{2}$ Nanocrystals Revisited: Developing Ultra-Sensitive Sensors for Detecting the $H_{2}S$ Leakage of Biogas", Scientific Reports, Vol.4, Article No.6028, 2014. DOI: https://dx.doi.org/10.1038/srep06028
  6. Y. Deng, C. Fang, G. Chen, "The developments of $SnO_{2}$/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review", Journal of Power Sources, Vol.304, pp.81-101, 2016. DOI: https://dx.doi.org/10.1016/j.jpowsour.2015.11.017 https://doi.org/10.1016/j.jpowsour.2015.11.017
  7. Y. Yang, X. Zhao, H. E. Wang, M. Li, C. Hao, M. Ji, S. Ren, G. Cao, "Phosphorized $SnO_{2}$/graphene heterostructures for highly reversible lithium-ion storage with enhanced pseudocapacitance", Journal of Materials Chemistry A, Vol.6, No.8, pp.3479-3487, 2018. DOI: https://dx.doi.org/10.1039/C7TA10435A https://doi.org/10.1039/C7TA10435A
  8. G. H. Jeong, S. Baek, S. Lee, S. W. Kim, "Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials", Chemistry An Asian Journal, Vol.11, No.7, pp.949-964, 2016. DOI: https://dx.doi.org/10.1002/asia.201501072 https://doi.org/10.1002/asia.201501072
  9. S. G. Chatterjee, S. Chatterjee, A. K. Ray, A. K. Chakraborty, "Graphene-metal oxide nanohybrids for toxic gas sensor: A review", Sensors and Actuators B: Chemical, Vol.221, pp.1170-1181, 2015. DOI: https://dx.doi.org/10.1016/j.snb.2015.07.070 https://doi.org/10.1016/j.snb.2015.07.070
  10. Z. R. Dai, Z. W. Pan, Z. L. Wang, "Growth and Structure Evolution of Novel Tin Oxide Diskettes", Journal of American Chemical Society, Vol.124, No.29, pp.8673-8680, 2002. DOI: https://dx.doi.org/10.1021/ja026262d https://doi.org/10.1021/ja026262d
  11. Y. Wang, M. Guo, M. Zhang, X. Wang, "Hydrothermal synthesis of $SnO_{2}$ nanoflower arrays and their optical properties", Scripta Materialia, Vol.61, No.3, pp.234-236, 2009. DOI: https://dx.doi.org/10.1016/j.scriptamat.2009.03.040 https://doi.org/10.1016/j.scriptamat.2009.03.040
  12. X. Zhou, W. Fu, H. Yang, Y. Mu, J. Ma, L. Tian, B. Zhao, M. Li, "Facile fabrication of transparent $SnO_{2}$ nanorod array and their photoelectrochemical properties", Materials Letters, Vol.93, pp.95-98, 2013. DOI: https://dx.doi.org/10.1016/j.matlet.2012.11.050 https://doi.org/10.1016/j.matlet.2012.11.050
  13. A. Ayeshamariam, C. Sanjeeviraja, R. Perumal Samy, "Synthesis, Structural and Optical Characterizations of $SnO_{2}$ Nanoparticles", Journal on Photonics and Spintronics, Vol.2, No.2, pp.4-8, 2013.
  14. Y. Cheng, R. Yang, J. P. Zheng, Z. L. Wang, P. Xiong, "Characterizing individual $SnO_{2}$ nanobelt field-effect transistors and their intrinsic responses to hydrogen and ambient gases", Materials Chemistry and Physics, Vol.137, No.1, pp.372-380, 2012. DOI: https://dx.doi.org/10.1016/j.matchemphys.2012.09.037 https://doi.org/10.1016/j.matchemphys.2012.09.037
  15. M. A. Baker, H. Fakhouri, R. Grilli, J. Pulpytel, W. Smith, F. Arefi-Khonsari, "Effect of total gas pressure and $O_{2}/N_{2}$ flow rate on the nanostructure of N-doped $TiO_{2}$ thin films deposited by reactive sputtering", Thin Solid Films, Vol.552, pp.10-17, 2014. DOI: https://dx.doi.org/10.1016/j.tsf.2013.11.111 https://doi.org/10.1016/j.tsf.2013.11.111
  16. Y. M. Lu, J. Jiang, C. Xia, B. Kramm, A. Polity, Y. B. He, P. J. Klar, B. K. Meyer, "The influence of oxygen flow rate on properties of $SnO_{2}$ thin films grown epitaxially on c-sapphire by chemical vapor deposition", Thin Solid Films, Vol.594, Part B, pp.270-276, 2015. DOI: https://dx.doi.org/10.1016/j.tsf.2015.04.010 https://doi.org/10.1016/j.tsf.2015.04.010
  17. Y. Abe, Y. Kaga, M. Kawamura, K. Sasaki, "Effects of $O_{2}$ gas flow ratio and flow rate on the formation of $RuO_{2}$ thin films by reactive sputtering", Journal of Vaccum Science & Technology B, Vol.18, pp.1348-1351, 2000. DOI: https://dx.doi.org/10.1116/1.591385 https://doi.org/10.1116/1.591385
  18. A. C. Iniguez, R. R. Campomanes, M. H. Tabacnics, D. Comedi, "Influence of $O_{2}$ flow rate on growth rate, composition and structure of RF-Sputtered $TiO_{x}$ films", Revista Brasileira de Aplicacoes de Vacuo, Vol.22, No.1, pp.22-24, 2003.