The Influence of Oxygen Gas Flow Rate on Growth of Tin Dioxide Nanostructures

이산화주석 나노구조물의 성장에서 산소가스 유량이 미치는 영향

  • Kim, Jong-Il (Department of Advanced Chemical Engineering, Mokwon University) ;
  • Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
  • 김종일 (목원대학교 신소재화학공학과) ;
  • 김기출 (목원대학교 신소재화학공학과)
  • Received : 2018.07.09
  • Accepted : 2018.10.05
  • Published : 2018.10.31


Tin dioxide, $SnO_2$, is applied as an anode material in Li-ion batteries and a gas sensing materials, which shows changes in resistance in the presence of gas molecules, such as $H_2$, NO, $NO_2$ etc. Considerable research has been done on the synthesis of $SnO_2$ nanostructures. Nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in sensing gas molecules and improving the specific capacity of Li-ion batteries. In this study, $SnO_2$ nanostructures were grown on a Si substrate using a thermal CVD process with the vapor transport method. The carrier gas was mixed with high purity Ar gas and oxygen gas. The crystalline phase of the as-grown tin oxide nanostructures was affected by the oxygen gas flow rate. The crystallographic property of the as-grown tin oxide nanostructures were investigated by Raman spectroscopy and XRD. The morphology of the as-grown tin oxide nanostructures was confirmed by scanning electron microscopy. As a result, the $SnO_2$ nanostructures were grown directly on Si wafers with moderate thickness and a nanodot surface morphology for a carrier gas mixture ratio of Ar gas 1000 SCCM : $O_2$ gas 10 SCCM.


tin dioxide;nanostructure;vapor transport method;chemical vapor deposition;oxygen flow rate


Supported by : 한국연구재단


  1. J. H. Kim, K. M. Jeon, J. S. Park, Y. C. Kang, "Excellent Li-ion storage performances of hierarchical SnO-$SnO_{2}$ composite powders and SnO nanoplates prepared by one-pot spray pyrolysis", Journal of Power Sources, Vol.359, pp.363-370, 2017. DOI:
  2. J. H. Shin, J. Y. Song, "Electrochemical properties of Sn-decorated SnO nanobranches as an anode of Li-ion battery", Nano Convergence, Vol.3, No.1, Aritlcle ID 9, 2016. DOI:
  3. L. Zhang, H. B. Wu, X. W. Lou, "Growth of $SnO_{2}$ nanosheet arrays on various conductive substrates as integrated electrode for lithium-ion batteries", Materials Horizons, Vol.1, pp.133-138, 2014. DOI:
  4. S. Maeng, S. W. Kim, D. H. Lee, S. E. Moon, K. C. Kim, A. Maiti, "$SnO_{2}$ Nanoslab as $NO_{2}$ Sensor: Identification of the $NO_{2}$ Sensing Mechanism on a $SnO_{2}$ Surface", ACS Applied Materials and Interfaces, Vol.6, No.1, pp.357-363, 2014. DOI:
  5. L. Mei, Y. Chen. J. Ma, "Gas Sensing of $NO_{2}$ Nanocrystals Revisited: Developing Ultra-Sensitive Sensors for Detecting the $H_{2}S$ Leakage of Biogas", Scientific Reports, Vol.4, Article No.6028, 2014. DOI:
  6. Y. Deng, C. Fang, G. Chen, "The developments of $SnO_{2}$/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review", Journal of Power Sources, Vol.304, pp.81-101, 2016. DOI:
  7. Y. Yang, X. Zhao, H. E. Wang, M. Li, C. Hao, M. Ji, S. Ren, G. Cao, "Phosphorized $SnO_{2}$/graphene heterostructures for highly reversible lithium-ion storage with enhanced pseudocapacitance", Journal of Materials Chemistry A, Vol.6, No.8, pp.3479-3487, 2018. DOI:
  8. G. H. Jeong, S. Baek, S. Lee, S. W. Kim, "Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials", Chemistry An Asian Journal, Vol.11, No.7, pp.949-964, 2016. DOI:
  9. S. G. Chatterjee, S. Chatterjee, A. K. Ray, A. K. Chakraborty, "Graphene-metal oxide nanohybrids for toxic gas sensor: A review", Sensors and Actuators B: Chemical, Vol.221, pp.1170-1181, 2015. DOI:
  10. Z. R. Dai, Z. W. Pan, Z. L. Wang, "Growth and Structure Evolution of Novel Tin Oxide Diskettes", Journal of American Chemical Society, Vol.124, No.29, pp.8673-8680, 2002. DOI:
  11. Y. Wang, M. Guo, M. Zhang, X. Wang, "Hydrothermal synthesis of $SnO_{2}$ nanoflower arrays and their optical properties", Scripta Materialia, Vol.61, No.3, pp.234-236, 2009. DOI:
  12. X. Zhou, W. Fu, H. Yang, Y. Mu, J. Ma, L. Tian, B. Zhao, M. Li, "Facile fabrication of transparent $SnO_{2}$ nanorod array and their photoelectrochemical properties", Materials Letters, Vol.93, pp.95-98, 2013. DOI:
  13. A. Ayeshamariam, C. Sanjeeviraja, R. Perumal Samy, "Synthesis, Structural and Optical Characterizations of $SnO_{2}$ Nanoparticles", Journal on Photonics and Spintronics, Vol.2, No.2, pp.4-8, 2013.
  14. Y. Cheng, R. Yang, J. P. Zheng, Z. L. Wang, P. Xiong, "Characterizing individual $SnO_{2}$ nanobelt field-effect transistors and their intrinsic responses to hydrogen and ambient gases", Materials Chemistry and Physics, Vol.137, No.1, pp.372-380, 2012. DOI:
  15. M. A. Baker, H. Fakhouri, R. Grilli, J. Pulpytel, W. Smith, F. Arefi-Khonsari, "Effect of total gas pressure and $O_{2}/N_{2}$ flow rate on the nanostructure of N-doped $TiO_{2}$ thin films deposited by reactive sputtering", Thin Solid Films, Vol.552, pp.10-17, 2014. DOI:
  16. Y. M. Lu, J. Jiang, C. Xia, B. Kramm, A. Polity, Y. B. He, P. J. Klar, B. K. Meyer, "The influence of oxygen flow rate on properties of $SnO_{2}$ thin films grown epitaxially on c-sapphire by chemical vapor deposition", Thin Solid Films, Vol.594, Part B, pp.270-276, 2015. DOI:
  17. Y. Abe, Y. Kaga, M. Kawamura, K. Sasaki, "Effects of $O_{2}$ gas flow ratio and flow rate on the formation of $RuO_{2}$ thin films by reactive sputtering", Journal of Vaccum Science & Technology B, Vol.18, pp.1348-1351, 2000. DOI:
  18. A. C. Iniguez, R. R. Campomanes, M. H. Tabacnics, D. Comedi, "Influence of $O_{2}$ flow rate on growth rate, composition and structure of RF-Sputtered $TiO_{x}$ films", Revista Brasileira de Aplicacoes de Vacuo, Vol.22, No.1, pp.22-24, 2003.