Effect of Ion Exchange Capacity on Salt Removal Rate in Membrane Capacitive Deionization Process

이온교환용량이 막 결합형 축전식 탈염공정에서 염 제거율에 미치는 영향

  • Yun, Won Seob (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Cheong, Seong Ihl (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 윤원섭 (한남대학교 화공신소재공학과) ;
  • 정성일 (한남대학교 화공신소재공학과) ;
  • 임지원 (한남대학교 화공신소재공학과)
  • Received : 2018.10.18
  • Accepted : 2018.10.25
  • Published : 2018.10.31


In order to investigate the effect of ion exchange capacity of ion exchange membranes on the salt removal efficiency in the membrane capacitive deionization process, sulfosuccinic acid (SSA) as the cross linking agent was added to poly(vinyl alcohol)(PVA) and sulfonic acid-co-maleic acid (PSSA_MA) was put into PVA at different concentrations of 10, 50 and 90 wt% relative to PVA. As the content of PSSA_MA increased, the water content and ion exchange capacity increased and the salt removal efficiency was also increased in the membrane capacitive deionization process. The highest salt removal efficiency was 65.5% at 100 mg/L NaCl feed at a flow rate, 15 mL/min and adsorption, 1.4 V/5 min for PSSA_MA 90 wt%.


Supported by : 환경부


  1. A. Hassanvand, G. Q. Chen, P. A. Webley, and S. E. Kentish, "A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization", Water Res., 131, 100 (2018).
  2. B. M. Asquith, J. Meier-Haack, and B. P. Ladewig, "Poly(arylene ether sulfone) copolymers as binders for capacitive deionization activated carbon electrodes", Chem. Eng. Res. Des., 104, 81 (2015).
  3. Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, and L. Pan, "Review on carbon-based composite materials for capacitive deionization", RSC Adv., 5, 15205 (2015).
  4. S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, "Review on the science and technology of water desalination by capacitive deionization", Prog. Mater. Sci., 58, 1388 (2013).
  5. J. H. Ryu, T. J. Kim, T. Y. Lee, and I. B. Lee, "A study on modeling and simulation of capacitive deionization process for waste water treatment", J. Taiwan. Inst. Chem. E., 41, 506 (2010).
  6. Y. J. Kim and J. H. Choi, "Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer", Water Res., 44, 990 (2010).
  7. J. W. Lee, H. I. Kim, H. J. Kim, H. S. Shin, J. S. Kim, B. I. Jeong, and S. G. Park, "Desalination effects of capacitive deionization process using activated carbon composite electrodes", J. Korean Electrochem. Soc., 12, 287 (2009).
  8. K. W. Kang and T. S. Hwang, "Synthesis and characteristics of partially fluorinated poly(vinylidene fluroide)(PVDF) cation exchange membrane via direct sulfonation", Membr. J., 25, 406 (2015).
  9. M. A. Anderson, A. L. Cudero, and J. Palma, "Effective modified carbon nanofibers as electrodes for capacitive deionization process", Electrochim. Acta, 55, 3845 (2010).
  10. S. Porada, L. Weinstein, R. Dash, A. Van der Wal, M. Bryjak, Y. Gogotsi, and P. M. Biesheuvel, "Water desalination using capacitive deionization with microporous carbon electrodes", ACS Appl. Mater. Interfaces, 4, 1194 (2012).
  11. P. M. Biesheuvel and A. van der Wal, "Membrane capacitive deionization", J. Membr. Sci., 346, 256 (2010).
  12. R. Zhao, P. M. Biesheuvel, and A. van der Wal, "Energy consumption and constant current operation in membrane capacitive deionization", Energy Environ. Sci., 5, 9520 (2010).
  13. C. Wang, H. Song, Q. Zhang, B. Wang, and A. Li, "Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration", Desalination, 365, 407 (2015).
  14. Y.-J. Kim, J. Hur, W. Bae, and J.-H. Choi, "Desalination of brackish water containing oil compound by capacitive deionization process", Desalination, 253, 119 (2010).
  15. P. M. Biesheuvel, R. Zhao, S. Porada, and A. van der Wal, "Theory of membrane capacitive deionization including the effect of the electrode pore space", J. Colloid Interface Sci., 350, 239 (2011).
  16. H. Strathmann, "Ion-exchange Membrane Separation Processes", Elsevier, Amsterdam (2004).
  17. D. H. Kim, J. S. Park, and M. S. Kang, "Controlling water splitting characteristics of anion-exchange membranes by coating imidazolium polymer", Membr. J., 25, 152 (2015).
  18. J. H. Yeo and J. H. Choi, "Enhancement of selective removal of nitrate ions from a mixture of anions using a carbon electrode coated with ion-exchange resin powder", Appl. Chem. Eng., 24, 49 (2013).
  19. S. W. Chen, J. H. Jun, J. W. Rhim, and S. Y. Nam, "Studies on the preparation of the poly (vinyl alcohol) ion exchange membranes for direct methanol fuel cell", Membr. J., 13, 199 (2003).
  20. H. Strathmann, "Electrodialysis, a mature technology with a multitude of new applications", Desalination, 264, 268 (2010).
  21. C. W. Lin, Y. F. Huang, and A. M. Kannan, "Cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride)-based semi-interpenetrating network as proton-conducting membranes for direct methanol fuel cells", J. Power Sourecs, 171, 340 (2007).
  22. Y. S. Jeon and J. W. Rhim, "Performance study on membrane capacitive deionization (MCDI) processes using the composite carbon electrodes coated by cation and anion exchange polymers based on PVA", Polym. Korea, 41, 352 (2017).