DOI QR코드

DOI QR Code

DETERMINATION OF THE INVARIANT POINT OF THE KOREAN VLBI NETWORK RADIO TELESCOPES: FIRST RESULTS AT THE ULSAN AND TAMNA OBSERVATORIES

  • Yoo, Sung-Moon ;
  • Jung, Taehyun ;
  • Lee, Sung-Mo ;
  • Yoon, Ha Su ;
  • Park, Han-Earl ;
  • Chung, Jong-Kyun ;
  • Roh, Kyoung-Min ;
  • Wi, Seog Oh ;
  • Cho, Jungho ;
  • Byun, Do-Young
  • Received : 2018.08.07
  • Accepted : 2018.09.29
  • Published : 2018.10.31

Abstract

We present the first results of the invariant point (IVP) coordinates of the KVN Ulsan and Tamna radio telescopes. To determine the IVP coordinates in the geocentric frame (ITRF2014), a coordinate transformation method from the local frame, in which it is possible to survey using the optical instrument, to the geocentric frame was adopted. The least-square circles are fitted in three dimensions using the Gauss-Newton method to determine the azimuth and elevation axes in the local frame. The IVP in the local frame is defined as the mean value of the intersection points of the azimuth axis and the orthogonal vector between the azimuth and elevation axes. The geocentric coordinates of the IVP are determined by obtaining the seven transformation parameters between the local frame and the east-north-up (ENU) geodetic frame. The axis-offset between the azimuth and elevation axes is also estimated. To validate the results, the variation of coordinates of the GNSS station installed at KVN Ulsan was compared to the movement of the IVP coordinates over 9 months, showing good agreement in both magnitude and direction. This result will provide an important basis for geodetic and astrometric applications.

Keywords

instrumentation: interferometers;telescopes;reference systems

References

  1. Abbondanza, C., Altamimi, Z., Sarti, P., Negusini, M., & Vittuari, L. 2009, Local Effects of Redundant Terrestrial and GPS-Based Tie Vectors in ITRF-Like Combinations, J. Geodesy, 83, 1031 https://doi.org/10.1007/s00190-009-0321-6
  2. Altamimi, Z., Collilieux, X., & Mtivier, L. 2011, ITRF2008: An Improved Solution of the International Terrestrial Reference Frame, J. Geodesy, 85, 457 https://doi.org/10.1007/s00190-011-0444-4
  3. Dach, R., Lutz, S., Walser, P., & Fridez, P. 2015, Bernese GNSS Software Version 5.2
  4. Dawson, J., Sarti, P., Johnston, G. M., & Vittuari, L. 2007, Indirect Approach to Invariant Point Determination for SLR and VLBI Systems: An Assessment, J. Geodesy, 81, 433 https://doi.org/10.1007/s00190-006-0125-x
  5. Han, S. T., Lee, J. W., Kang, J., et al. 2013, Korean VLBI Network Receiver Optics for Simultaneous Multifrequency Observation: Evaluation, PASP, 125, 539 https://doi.org/10.1086/671125
  6. Harvey, B. R. 1991, Telescope Axis Surveys, Aust. J. Geod. Photogram. Surv., 54, 1
  7. Johnston, G., & Dawson, J. 2004, The 2003 Yarragadee (Moblas 5) Local Tie Survey, Geoscience Australia Record, 19
  8. Johnston, G., Dawson, J., & Naebkhil, S. 2004, The 2003 Mount Stromlo Local Tie Survey, Geoscience Australia Record, 20
  9. Kallio, U., & Poutanen, M. 2012, Can We Really Promise a mm-Accuracy for the Local Ties on a Geo-VLBI Antenna?, Geodesy for Planet Earth (Berlin: Springer), 35
  10. Lee, S. S., Petrov, L., Byun, D. Y., et al. 2014, Early Science with the Korean VLBI Network: Evaluation of System Performance, AJ, 147, 77 https://doi.org/10.1088/0004-6256/147/4/77
  11. Lehmann, R. 2014, Transformation Model Selection by Multiple Hypotheses Testing, J. Geodesy, 88, 1117 https://doi.org/10.1007/s00190-014-0747-3
  12. Li, J., Liu, L., Zheng, W., & Sun, Z. 2012, Positioning Reduction in the Real-Time Phase of ChangE-2 Satellite, Science China Physics, Mechanics and Astronomy, 55, 371 https://doi.org/10.1007/s11433-011-4598-0
  13. Li, J., Xiong, F., Yu, C., Zhang, J., Guo, L., & Fan, Q. 2014, Precise Determination of the Reference Point Coordinates of Shanghai Tianma 65-m Radio Telescope, Chinese Sci. Bull., 59, 2558 https://doi.org/10.1007/s11434-014-0349-8
  14. Ma, C. 1978, Very Long Baseline Interferometry Applied to Polar Motion, Relativity, and Geodesy, Dissertation, University of Maryland College Park
  15. Mercan, H., Akyilmaz, O., & Aydin, C. 2018, Solution of the Weighted Symmetric Similarity Transformations Based on Quaternions, J. Geodesy, 92, 1113 https://doi.org/10.1007/s00190-017-1104-0
  16. Ning, T., Haas, R., & Elgered, G. 2015, Determination of the Local Tie Vector between the VLBI and GNSS Reference Points at Onsala Using GPS Measurements, J. Geodesy, 89, 711 https://doi.org/10.1007/s00190-015-0809-1
  17. Sarti, P., Sillard, P., & Vittuari, L. 2004, Surveying Co-Located Space-Geodetic Instruments for ITRF Computation, J. Geodesy, 78, 210 https://doi.org/10.1007/s00190-004-0387-0
  18. Wei, E., Jin, S., Yang, H., et al. 2013, Simulation and Results on Real-Time Positioning of Chang'E-3 Rover with the Same-Beam VLBI Observations, Planetary and Space Science, 84, 20 https://doi.org/10.1016/j.pss.2013.04.005