• Chang, Seo-Won ;
  • Byun, Yong-Ik ;
  • Shin, Min-Su ;
  • Yi, Hahn ;
  • Kim, Myung-Jin ;
  • Moon, Hong-Kyu ;
  • Choi, Young-Jun ;
  • Cha, Sang-Mok ;
  • Lee, Yongseok
  • Received : 2018.03.12
  • Accepted : 2018.09.18
  • Published : 2018.10.31


The DEEP-South (the Deep Ecliptic Patrol of the Southern Sky) photometric census of small Solar System bodies produces massive time-series data of variable, transient or moving objects as a by-product. To fully investigate unexplored variable phenomena, we present an application of multi-aperture photometry and FastBit indexing techniques for faster access to a portion of the DEEP-South year-one data. Our new pipeline is designed to perform automated point source detection, robust high-precision photometry and calibration of non-crowded fields which have overlap with previously surveyed areas. In this paper, we show some examples of catalog-based variability searches to find new variable stars and to recover targeted asteroids. We discover 21 new periodic variables with period ranging between 0.1 and 31 days, including four eclipsing binary systems (detached, over-contact, and ellipsoidal variables), one white dwarf/M dwarf pair candidate, and rotating variable stars. We also recover astrometry (< ${\pm}1-2$ arcsec level accuracy) and photometry of two targeted near-earth asteroids, 2006 DZ169 and 1996 SK, along with the small- (~0.12 mag) and relatively large-amplitude (~0.5 mag) variations of their dominant rotational signals in R-band.


methods: data analysis;techniques: photometric;stars: variables: general;asteroids: general


  1. Albareti, F. D., Allende Prieto, C., Almeida, A., et al. 2017, The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory, ApJS, 233, 25
  2. Bertin, E., & Arnouts, S. 1996, SExtractor: Software for Source Extraction, A&AS, 117, 393
  3. Berthier, J., Vachier, F., Thuillot, W., et al. 2006, Sky-BoT, A New VO Service to Identify Solar System Objects, ASPC, 351, 367
  4. Bowell, E., Koehn, B. W., Howell, S. B., et al. 1995, The Lowell Observatory Near-Earth-Object Search: A Progress Report, DPS, 27, 01.10
  5. Chang, S.-W., Byun, Y.-I., & Hartman, J. D. 2015, A New Method for Robust High-Precision Time-Series Photometry from Well-Sampled Images: Application to Archival MMT/Megacam Observations of the Open Cluster M37, AJ, 149, 135
  6. Chou, J., Howison, M., Austin, B., et al. 2011, Parallel Index and Query for Large Scale Data Analysis. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC11). ACM, New York, USA, 30, 11
  7. Covey, K. R., Ivezic, Z., Schlegel, D., et al. 2007, Stellar SEDs from 0.3 to 2.5 ${\mu}m$: Tracing the Stellar Locus and Searching for Color Outliers in the SDSS and 2MASS, AJ, 134, 2398
  8. Drake, A. J., Djorgovski, S. G., Mahabal, A., et al. 2009, First Results from the Catalina Real-Time Transient Survey, ApJ, 696, 870
  9. Drake, A. J., Graham, M. J., Djorgovski, S. G., et al. 2014, The Catalina Surveys Periodic Variable Star Catalog, ApJS, 213, 9
  10. Flewelling, H. A., Magnier, E. A., Chambers, K. C., et al. 2016, The Pan-STARRS1 Database and Data Products, arXiv:1612.05243
  11. Ivezic, Z., Smith, J. A., Miknaitis, G., et al. 2007, Sloan Digital Sky Survey Standard Star Catalog for Stripe 82: The Dawn of Industrial 1% Optical Photometry, AJ, 134, 973
  12. Hartman, J. D., & Bakos, G. A. 2016, VARTOOLS: A Program for Analyzing Astronomical Time-Series Data, A&C, 17, 1
  13. Heinze, A. N., Tonry, J. L., Denneau, L., et al. 2018, A First Catalog of Variable Stars Measured by the Asteroid Terrestrial-Impact Last Alert System (ATLAS), arXiv:1804.02132
  14. Kaiser, N., Aussel, H., Burke, B. E., et al. 2002, Pan-STARRS: A Large Synoptic Survey Telescope Array, SPIE, 4836, 154
  15. Kim, D.-W., Protopapas, P., Alcock, C., et al. 2009, Detrending Time Series for Astronomical Variability Surveys, MNRAS, 397, 558
  16. Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016a, KMT-Net: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories, JKAS, 49, 37
  17. Kim, S.-L., Cha, S.-M., Lee, C.-U., et al. 2016b, Crosstalk Correction of the KMTNet Mosaic CCD Image, PKAS, 31, 35
  18. Lagerkvist, C.-I., Harris, A. W., & Zappala, V. 1989, Asteroid Lightcurve Parameters, Asteroids II, 1162
  19. Larson, S., Beshore, E., Hill, R., et al. 2003, The CSS and SSS NEO Surveys, DPS, 35, 3604
  20. Lin, C.-H., Ip, W.-H., Lin, Z.-Y., et al. 2014, Detection of Large Color Variation in the Potentially Hazardous Asteroid (297274) 1996 SK, RAA, 14, 311
  21. Liu, Y.-B., Wang, F., Ji, K.-F., et al. 2014, NVST Data Archiving System Based on FastBit NoSQL Database, JKAS, 47, 115
  22. Miceli, A., Rest, A., Stubbs, C. W., et al. 2008, Evidence for Distinct Components of the Galactic Stellar Halo from 838 RR Lyrae Stars Discovered in the LONEOS-I Survey, ApJ, 678, 865
  23. Moon, H.-K., Kim, M.-J., Yim, H.-S., et al. 2016, DEEP-South: Network Construction, Test Runs and Early Results, Asteroids: New Observations, New Models, 318, 306
  24. Mueller, M., Delbo', M., Hora, J. L., et al. 2011, ExploreNEOs. III. Physical Characterization of 65 Potential Spacecraft Target Asteroids, AJ, 141, 109
  25. Palaversa, L., Ivezic, Z., Eyer, L., et al. 2013, Exploring the Variable Sky with LINEAR. III. Classification of Periodic Light Curves, AJ, 146, 101
  26. Peacock, J. A. 1983, Two-Dimensional Goodness-of-Fit Testing in Astronomy, MNRAS, 202, 615
  27. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical Recipe (Cambridge: Cambridge Univ. Press)
  28. Rebassa-Mansergas, A., Agurto-Gangas, C., Schreiber, M. R., et al. 2013, White Dwarf Main-Sequence Binaries from SDSS DR 8: Unveiling the Cool White Dwarf Population, MNRAS, 433, 3398
  29. Ruan, J. J., Anderson, S. F., MacLeod, C. L., et al. 2012, Characterizing the Optical Variability of Bright Blazars: Variability-Based Selection of Fermi Active Galactic Nuclei, ApJ, 760, 51
  30. Sesar, B., Stuart, J. S., Ivezic, Z., et al. 2011, Exploring the Variable Sky with LINEAR. I. Photometric Recalibration with the Sloan Digital Sky Survey, AJ, 142, 190
  31. Sesar, B., Ivezic, Z., Stuart, J. S., et al. 2013, Exploring the Variable Sky with LINEAR. II. Halo Structure and Substructure Traced by RR Lyrae Stars to 30 kpc, AJ, 146, 21
  32. Shin, M.-S., & Byun, Y.-I. 2004, Efficient Period Search for Time Series Photometry, JKAS, 37, 79
  33. Shin, M.-S., Sekora, M., & Byun, Y.-I. 2009, Detecting Variability in Massive Astronomical Time Series Data - I. Application of an Infinite Gaussian MixtureModel, MNRAS, 400, 1897
  34. Shin, M.-S., Yi, H., Kim, D.-W., et al. 2012, Detecting Variability in Massive Astronomical Time-Series Data. II. Variable Candidates in the Northern Sky Variability Survey, AJ, 143, 65
  35. Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, The Two Micron All Sky Survey (2MASS), AJ, 131, 1163
  36. Stokes, G. H., Evans, J. B., Viggh, H. E. M., et al. 2000, Lincoln Near-Earth Asteroid Program (LINEAR), Icar, 148, 21
  37. Torrealba, G., Catelan, M., Drake, A. J., et al. 2015, Discovery of -9000 new RR Lyrae in the Southern Catalina Surveys, MNRAS, 446, 2251
  38. van Dokkum, P. G. 2001, Cosmic-Ray Rejection by Laplacian Edge Detection, PASP, 113, 1420
  39. Watson, C., Henden, A. A., & Price, A. 2017, VizieR Online Data Catalog: AAVSO International Variable Star Index VSX, 1
  40. Wolf, C., Onken, C. A., Luvaul, L. C., et al. 2018, SkyMapper Southern Survey: First Data Release (DR1), PASA, 35, 10
  41. Wu, K., Ahern S., Bethel, E. W., et al. 2009, FastBit: Interactively Searching Massive Data, JPhCS, 180, 012053
  42. Yim, H.-S., Kim, M.-J., Bae, Y.-H., et al. 2016, DEEP-South: Automated Observation Scheduling, Data Reduction and Analysis Software Subsystem, Asteroids: New Observations, New Models, 318, 311
  43. Bertin, E. 2006, Automatic Astrometric and Photometric Calibration with SCAMP, ASPC, 351, 112