Silyl-group functionalized organic additive for high voltage Ni-rich cathode material

  • Jang, Seol Heui (Department of Chemistry, Incheon National University) ;
  • Jung, Kwangeun (Department of Chemistry, Incheon National University) ;
  • Yim, Taeeun (Department of Chemistry, Incheon National University)
  • Received : 2018.02.27
  • Accepted : 2018.07.16
  • Published : 2018.11.30


To allow stable cycling of layered nickel-rich cathode material at high voltage, silyl-functionalized dimethoxydimethylsilane is proposed as a multi-functional additive. In contrast to typical functional additive, dimethoxydimethylsilane does not make artificial cathode-electrolyte interfaces by electrochemical oxidation because it is quite stable under anodic polarization. We find that dimethoxydimethylsilane mainly focuses on scavenging nucleophilic fluoride species that can be produced by electrolyte decomposition during cycling, leading to improving interfacial stability of both nickel-rich cathode and graphite anode. As a result, the cell cycled with dimethoxydimethylsilane-controlled electrolyte exhibits 65.7% of retention after 100 cycle, which is identified by systematic spectroscopic analyses for the cycled cell.


Supported by : National Research Foundation of Korea (NRF)


  1. B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries. A look into the future, Energy Environ. Sci. 4 (2011) 3287-3295.
  2. A. Yoshino, The birth of the lithium-ion battery, Angew. Chem. Int. Ed. 51 (2012) 5798-5800.
  3. J.W. Fergus, Recent developments in cathode materials for lithium ion batteries, J. Power Sources 195 (2010) 939-954.
  4. Y. Nishi, Lithium ion secondary batteries; past 10 years and the future, J. Power Sources 100 (2001) 101-106.
  5. M. Armand, J.-M. Tarascon, Building better batteries, Nature 451 (2008) 652-657.
  6. A. Manthiram, J.C. Knight, S.-T. Myung, S.-M. Oh, Y.-K. Sun, Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives, Adv. Energy Mater. 6 (2016) 1501010.
  7. T. Yim, K.S. Kang, J. Mun, S.H. Lim, S.-G. Woo, K.J. Kim, M.-S. Park, W. Cho, J.H. Song, Y.-K. Han, J.-S. Yu, Y.-J. Kim, Understanding the effects of a multifunctionalized additive on the cathode-electrolyte interfacial stability of Ni-rich materials, J. Power Sources 302 (2016) 431-438.
  8. J. Li, L.E. Downie, L. Ma, W. Qiu, J.R. Dahn, Study of the failure mechanisms of $LiNi_{0.8}Mn_{0.1}Co_{0.1}O_2$ cathode material for lithium ion batteries, J. Electrochem. Soc. 162 (2015) A1401-A1408.
  9. S.-K. Jung, H. Gwon, J. Hong, K.-Y. Park, D.-H. Seo, H. Kim, J. Hyun, W. Yang, K. Kang, Understanding the degradation mechanisms of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode material in lithium ion batteries, Adv. Energy Mater. 4 (2014) 1300787.
  10. M. He, C.-C. Su, C. Peebles, Z. Feng, J.G. Connell, C. Liao, Y. Wang, I.A. Shkrob, Z. Zhang, Mechanistic insight in the function of phosphite additives for protection of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode in high voltage Li-Ion cells, ACS Appl. Mater. Interfaces 8 (2016) 11450-11458.
  11. W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries, Angew. Chem. Int. Ed. 54 (2015) 4440-4457.
  12. C.M. Julien, A. Mauger, K. Zaghib, H. Groult, Comparative issues of cathode materials for Li-ion batteries, Inorganics 2 (2014) 132-154.
  13. Y. Koyama, H. Arai, I. Tanaka, Y. Uchimoto, Z. Ogumi, Defect chemistry in layered LiMO2 (M = Co, Ni, Mn, and $Li_{1/3}Mn_{2/3}$) by first-prinsiples calculations, Chem. Mater. 24 (2012) 3886-3894.
  14. H.J. Yu, Y.M. Qian, M.R. Otani, D.M. Tang, S.H. Guo, Y.B. Zhu, H.S. Zhou, Study of the lithium/nickel ions exchange in the layered $LiNi_{0.42}Mn_{0.42}Co_{0.16}O_2$ cathode material for lithium ion batteries: experimental and first-principles calculations, Energy Environ. Sci. 7 (2014) 1068-1078.
  15. H. Zheng, Q. Sun, G. Liu, X. Song, V.S. Battaglia, Correlation between dissolution behaviour and electrochemical cycling performance for $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$-based cells, J. Power Sources 207 (2012) 134-140.
  16. C. Liang, F. Kong, R.C. Longo, S. KC, J.-S. Kim, S. Jeon, S. Choi, K. Cho, Unraveling the origin of instability in Ni-Rich $LiNi_{1-2X}Co_XMn_XO_2$ (NCM) cathode materials, J. Phys. Chem. C 120 (2016) 6383-6393.
  17. K.S. Kang, S. Choi, J. Song, S.-G. Woo, Y.N. Jo, J. Choi, T. Yim, J.-S. Yu, Y.-J. Kim, Effect of additives on electrochemical performance of lithium nickel cobalt manganese oxide at high temperature, J. Power Sources 253 (2014) 48-54.
  18. S.K. Martha, J. Nanda, G.M. Veith, N.J. Dudney, Electrochemical and rate performance study of high-voltage lithium-rich composition: $Li_{1.2}Mn_{0.525}Ni_{0.175}Co_{0.1}O_2$, J. Power Sources 199 (2012) 220.
  19. T. Kawamura, A. Kimura, M. Egashira, S. Okada, J.-I. Yamaki, Thermal stability of alkyl carbonate mixed-solvent electrolyte for lithium ion cells, J. Power Sources 104 (2002) 260-264.
  20. Y. Okamoto, Ab inition calculations of thermal decomposition mechanism of LiPF6- based electrolytes for lithium-ion batteries, J. Electrochem. Soc. 160 (2013) A404-A409.
  21. D. Aurbach, A. Zaban, Y. Ein-Eli, I. Weissman, O. Chusid, B. Markovsky, M. Levi, E. Levi, A. Schechter, E. Granot, Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems, J. Power Sources 68 (1997) 91-98.
  22. S.F. Lux, I.T. Lucas, E. Pollak, S. Passerini, M. Winter, R. Kostecki, The mechanism of HF formation in $LiPF_6$ based organic carbonate electrolytes, Electrochem. Commun. 14 (2012) 47-50.
  23. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci. 4 (2011) 3243-3262.
  24. C. Li, H.P. Zhang, L.J. Fu, H. Liu, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu, Cathode materials modified by surface coating for lithium ion batteries, Electrochim. Acta 51 (2006) 3872-3883.
  25. T. Joshi, K.S. Eom, G. Yushin, T.F. Fuller, Effect of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries, J. Electrochem. Soc. 161 (2014) A1915-A1921.
  26. S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon 105 (2016) 52-76.
  27. H. Ota, Y. Sakata, A. Inoue, S. Yamaguchi, Analysis of vinylene carbonate derived SEI layers on graphite anode, J. Electrochem. Soc. 151 (2004) A1659-A1669.
  28. P. Murray-Rust, J.P. Glusker, Directional hydrogen bonding to sp2- and sp3-hybridized oxygen atoms and its relevance to ligand-macromolecule interactions, J. Am. Chem. Soc. 106 (1984) 1018-1025.
  29. Carey, A. Francis, Richard J. Sundberg, Advanced Organic Chemistry Part A: Structure and Mechanisms, fifth ed., Springer, Germany, 2006.
  30. S.H. Jang, T. Yim, Effect of silyl ether-functionalized dimethoxydimethylsilane on electrochemical performance of Ni-rich NCM cathode, ChemPhysChem 18 (2017) 3402-3406.
  31. A.S. Pilcher, H.L. Ammon, P. DeShong, Utilization of tetrabutylammonium (Triphenylsilyl)Difluorosilicate as a fluoride source for nucleophilic fluorination, J. Am. Chem. Soc. 117 (1995) 5166-5167.
  32. R.K. Sharma, J.L. Fry, Instability of anhydrous tetra-normal-alkylammonium fluorides, J. Org. Chem. 48 (1983) 2112-2114.
  33. J.W. Emsley, J. Feeney, L.H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy, 2th ed., Pergamon Press, London, 1968.
  34. B.K. Hunter, L.W. Reeves, Chemical shifts for compounds of the group IV elements silicon and tin, Can. J. Chem. 46 (1968) 1399-1414.
  35. S.S. Zhang, A review on electrolyte additives for lithium-ion batteries, J. Power Sources 162 (2006) 1379-1394.
  36. C.L. Campion, W. Li, B.L. Lucht, Thermal decomposition of $LiPF_6$-based electrolytes for lithium-ion batteries, J. Electrochem. Soc. 152 (2005) A2327-A2334.
  37. H. Yang, G.V. Zhuang, P.N. Ross, Thermal stability of $LiPF_6$ salt and Li-ion battery electrolytes containing $LiPF_6$, J. Power Sources 161 (2006) 573-579.
  38. T. Kawamura, S. Okada, J.-I. Yamaki, Decomposition reaction of $LiPF_6$-based electrolytes for lithium ion cells, J. Power Sources 156 (2006) 547-554.
  39. M. Xu, W. Li, B.L. Lucht, Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries, J. Power Sources 193 (2009) 804-809.
  40. C. Peebles, R. Sahore, J.A. Gilbert, J.C. Garcia, A. Tornheim, J. Bareno, H. Iddir, C. Liao, D.P. Abraham, Tris (trimethylsilyl) phosphite (TMSPi) and triethyl phosphite (TEPi) as electrolyte additives for lithium ion batteries: mechanistic insights into differences during $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$-graphite full cell cycling, J. Electrochem. Soc. 164 (2017) A1579-A1586.
  41. X. Wang, X. Zheng, Y. Liao, Q. Huang, L. Xing, M. Xu, W. Li, Maintaining structural integrity of 4.5V lithium cobalt oxide cathode with fumaronitrile as a novel electrolyte additive, J. Power Sources 15 (2017) 108-116.
  42. L. Yang, B.L. Lucht, Inhibition of electrolyte oxidation in lithium ion batteries with electrolyte additives, Electrochem. Solid State Lett. 12 (2009) A229-A231.
  43. D. Ensling, M. Stjerndahl, A. Nyten, T. Gustafsson, J.O. Thomas, A comparative XPS surface study of $Li_2FeSiO_4$/C cycled with LiTFSI-and $LiPF_6$-based electrolytes, J. Mater. Chem. 19 (2009) 82-88.
  44. K. Edstrom, T. Gustafsson, J.O. Thomas, The cathode-electrolyte interface in a Liion battery, Electrochim. Acta 50 (2004) 397-403.
  45. D. Bar-Tow, E. Peled, L. Burstein, A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-Ion batteries, J. Electrochem. Soc. 146 (1999) 824-832.
  46. K. Kanamura, H. Tamura, Z.-I. Takehara, XPS analysis of a lithium surface immersed in propylene carbonate solution containing various salts, J. Electroanal. Chem. 333 (1992) 127-142.
  47. J.-Y. Eom, I.-H. Jung, J.-H. Lee, Effects of vinylene carbonate on high temperature storage of high voltage Li-ion batteries, J. Power Sources 196 (2011) 9810-9814.
  48. B. Markovsky, A. Rodkin, G. Salitra, Y. Talyosef, D. Aurbach, H.-J. Kim, The impact of $Co^{2+}$ ions in solutions on the performance of $LiCoO_2$, Li, and lithiated graphite electrodes, J. Electrochem. Soc. 151 (2004) A1068-A1076.
  49. S. Komaba, N. Kumagai, Y. Kataoka, Influence of manganese (II), cobalt (II), and nickel (II) additives in electrolyte on performance of graphite anode for lithium-ion batteries, Electrochim. Acta 47 (2002) 1229-1239.