DOI QR코드

DOI QR Code

Improved Resistance Switching Characteristics of BiFeO3 Thin Film by Increasing the Annealing Temperature

  • Miao, Zhilei (College of Physical Science and Technology, Yangzhou University) ;
  • Wang, Wei (College of Physical Science and Technology, Yangzhou University) ;
  • Yuan, Rongchun (College of Physical Science and Technology, Yangzhou University) ;
  • Zhu, Jun (College of Physical Science and Technology, Yangzhou University) ;
  • Wu, Shudong (College of Physical Science and Technology, Yangzhou University) ;
  • Chen, Haitao (College of Physical Science and Technology, Yangzhou University) ;
  • Zeng, Xianghua (College of Physical Science and Technology, Yangzhou University) ;
  • Wang, Qiang (College of Physical Science and Technology, Yangzhou University)
  • Received : 2018.07.05
  • Accepted : 2018.08.23
  • Published : 2018.09.30

Abstract

We have fabricated $BiFeO_3$ thin film deposited on Pt/Ti/SiO2/Si substrates by the chemical solution deposition method. The effects of annealing temperature on the thin film structure, resistance switching (RS) properties, conduction mechanisms are investigated. It exhibits improved RS window with high ON/OFF ratio (${\sim}10^4$) for the sample annealed at $650^{\circ}C$. XPS characterization indicates that cation ratio of $Fe^{2+}/Fe^{3+}$ is increased with increasing annealing temperature. Crystal lattice distortion generated by $Fe^{2+}$ cations, along with oxygen vacancies, commonly contribute to opening the RS window and the increment of conductive filaments. The film's conduction mechanisms under different annealing temperatures are fully discussed. The RS properties of this system can be effectively improved by increasing the annealing temperature, which is crucial prerequisite for future applications of BFO-based thin film device in resistance random access memory.

Acknowledgement

Supported by : National Natural Science Foundation of China (NSFC)

References

  1. F. Pan, S. Gao, C. Chen, C. Song and F. Zeng, Mat. Sci. Eng. R 83, 1 (2014). https://doi.org/10.1016/j.mser.2014.06.002
  2. D. S. Jeong, R. J. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru and C. S. Hwang, Rep. Prog. Phys. 75, 076502 (2012). https://doi.org/10.1088/0034-4885/75/7/076502
  3. K. Shibuya, R. Dittmann, S. B. Mi and R. Waser, Adv. Mater. 22, 411 (2010). https://doi.org/10.1002/adma.200901493
  4. Z. B. Yan, Y. Y. Guo, G. Q. Zhang and J. M. Liu, Adv. Mater. 23, 1351 (2011). https://doi.org/10.1002/adma.201004306
  5. Y. A. Park, K. D. Sung, C. J. Won, J. H. Jung and N. Hur, J. Appl. Phys. 114, 094101 (2013). https://doi.org/10.1063/1.4819800
  6. W. Eerenstein, N. D. Mathur and J. F. Scott, Nature 442, 759 (2006). https://doi.org/10.1038/nature05023
  7. R. Ramesh and N. A. Spldin, Nat. Mater. 6, 21 (2007). https://doi.org/10.1038/nmat1805
  8. K. B. Yin, M. Li, Y. W. Liu, C. L. He, F. Zhuge, B. Chen, W. Lu, X. Q. Pan and R. W. Li, Appl. Phys. Lett. 97, 042101 (2010). https://doi.org/10.1063/1.3467838
  9. S. W. Chen and J. M. Wu, Thin Solid Films 519, 499 (2010). https://doi.org/10.1016/j.tsf.2010.08.004
  10. K. Bogle, R. Narwade, A. Phatangare, S. Dahiwale, M. Mahabole and R. Khairnar, Phys. Status Solidi A 213, 2183 (2016). https://doi.org/10.1002/pssa.201533035
  11. L. H. Jin, X. W. Tang, D. P. Song, R. H. Wei, J. Yang, J. M. Dai, W. H. Song, X. B. Zhu and Y. P. Sun, J. Mater. Chem. C 3, 10742 (2015). https://doi.org/10.1039/C5TC02379C
  12. Y. Wang, Q. H. Jiang, H. C. He and C. W. Nan, Appl. Phys. Lett. 88, 142503 (2006). https://doi.org/10.1063/1.2191947
  13. J. M. Luo, S. P. Lin, Y. Zheng and B. Wang, Appl. Phys. Lett. 101, 062902 (2012). https://doi.org/10.1063/1.4742897
  14. S. W. Liu, C. Li, J. G. Yu and Q. J. Xiang, CrystEngComm 13, 2533 (2011). https://doi.org/10.1039/c0ce00295j
  15. J. Q. Wang, S. Y. Su, B. Liu, M. H. Cao and C. W. Hu, Chem. Commun. 49, 7830 (2013). https://doi.org/10.1039/c3cc42487a
  16. J. K. Kim, S. S. Kim and W. J. Kim, Mater. Lett. 59, 4006 (2005). https://doi.org/10.1016/j.matlet.2005.07.050
  17. J. G. Wu and J. Wang, Acta Mater. 58, 1688 (2010). https://doi.org/10.1016/j.actamat.2009.11.011
  18. D. H. Kuang, P. Tang, S. H. Yang and Y. L. Zhang, J. Sol-Gel. Sci. Technol. 73, 410 (2015). https://doi.org/10.1007/s10971-014-3548-5
  19. J. Liu, H. F. Yang, Z. Y. Ma, K. J. Chen, X. X. Zhang, X. F. Huang and S. Oda, J. Phys. D: Appl. Phys. 51, 025102 (2018). https://doi.org/10.1088/1361-6463/aa9c15
  20. C. Wang, K. J. Jin, Z. T. Xu, L. Wang, C. Ge, H. B. Lu, H. Z. Guo, M. He and G. Z. Yang, Appl. Phys. Lett. 98, 192901 (2011). https://doi.org/10.1063/1.3589814
  21. Y. Shuai, S. Q. Zhou, D. Buerger, M. Helm and H. Schmidt, J. Appl. Phys. 109, 124117 (2011). https://doi.org/10.1063/1.3601113
  22. Y. Liu, Y. J. Qi, P. Zhou, C. X. Guang, H. Chen, J. Z. Wang, Z. J. Ma, T. J. Zhang and Y. Liu, J. Phys. D: Appl. Phys. 51, 025303 (2018). https://doi.org/10.1088/1361-6463/aa9ae4
  23. T. L. Qu, Y. G. Zhao, D. Xie, J. P. Shi, Q. P. Chen and T. L. Ren, Appl. Phys. Lett. 98, 173507 (2011). https://doi.org/10.1063/1.3584031
  24. J. R. Yeargan and H. L. Taylor, J. Appl. Phys. 39, 5600 (1968). https://doi.org/10.1063/1.1656022
  25. H. Yang, H. Wang, G. F. Zou, M. Jain, N. A. Suvorova, D. M. Feldmann and Q. X. Jia, Appl. Phys. Lett. 93, 142904 (2008). https://doi.org/10.1063/1.3000013
  26. T. Gao, Z. Chen, Y. X. Zhu, F. Niu, Q. L. Huang, L. S. Qin, X. G. Sun and Y. X. Huang, Mater. Res. Bull. 59, 6 (2014). https://doi.org/10.1016/j.materresbull.2014.06.022
  27. X. W. Tang, J. M. Dai, X. B. Zhu, J. C. Lin, Q. Chang, D. J. Wu, W. H. Song and Y. P. Sun, J. Am. Ceram. Soc. 95, 538 (2012). https://doi.org/10.1111/j.1551-2916.2011.04920.x
  28. B. B. Yang, D. P. Song, L. H. Jin, X. W. Tang, J. Yang, J. M. Dai, W. H. Song, X. B. Zhu and Y. P. Sun, J. Alloy Compd. 694, 489 (2017). https://doi.org/10.1016/j.jallcom.2016.10.011
  29. B. J. Tan, K. J. Klabunde and P. M. A. Sherwood, Chem. Mater. 2, 186 (1990). https://doi.org/10.1021/cm00008a021
  30. S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu and J. L. Musfeldt, Appl. Phys. Lett. 92, 091905 (2008). https://doi.org/10.1063/1.2887908
  31. J. J. Huang, T. C. Chang, J. B. Yang, S. C. Chen, P. C. Yang, Y. T. Chen, H. C. Tseng, S. M. Sze, A. K. Chu and M. J. Tsai, IEEE Electr. Device. L 33, 1387 (2012).
  32. L. Pintilie, C. Dragoi, Y. H. Chu, L. W. Martin, R. Ramesh and M. Alexe, Appl. Phys. Lett. 94, 232902 (2009). https://doi.org/10.1063/1.3152784