DOI QR코드

DOI QR Code

Highly-efficient catalytic combustion performance of 1,2-dichlorobenzene over mesoporous TiO2-SiO2 supported CeMn oxides: The effect of acid sites and redox sites

  • Zhao, Haijun (State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences) ;
  • Han, Weiliang (State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences) ;
  • Dong, Fang (State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences) ;
  • Tang, Zhicheng (State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences)
  • Received : 2017.10.20
  • Accepted : 2018.03.11
  • Published : 2018.08.25

Abstract

High specific surface area $CeMn/TiO_2-SiO_2$ catalysts were synthesized and evaluated for the catalytic combustion of 1,2-dichlorobenzene (o-DCB). Mesoporous $TiO_2-SiO_2$ supports were prepared by evaporation-induced self-assembly (EISA) method to investigate the promotion of Si on the acid properties of $TiO_2$. Pore structures of $TiO_2-SiO_2$ were modulated by controlling the amount of hydrochloric acid during the preparation process of mesoporous supports, and the influence of structures and physicochemical properties of $CeMn/TiO_2-SiO_2$ catalysts on the activity and stability of o-DCB catalytic combustion were thoroughly studied. The results showed that Mn cations incorporated into $CeO_2$ fluorite structure caused the formation of more active oxygen species. The active oxygen species and high specific surface area of catalysts played significant roles in o-DCB oxidation reaction. The influence of water on o-DCB catalytic combustion was also studied, and two different observations were obtained at low or high content of water. Due to deposition of Cl species on the surface of catalyst, $CeMn/TiO_2-SiO_2$ loses partial activity during o-DCB catalytic combustion, and most of activity could be recovered through Deacon reaction.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. X. Liu, J. Wang, X. Wang, T. Zhu, Chemosphere 133 (2015) 90. https://doi.org/10.1016/j.chemosphere.2015.04.009
  2. G. Su, L. Huang, S. Liu, H. Lu, F. Yang, M. Zheng, Catal. Sci. Technol. 5 (2015) 1041.
  3. Y. Chen, Q. Wu, K. Liu, Chemosphere 154 (2016) 472. https://doi.org/10.1016/j.chemosphere.2016.04.012
  4. F. Zhang, X. Liu, Q. Zhang, D. Zhang, ACS Sustain. Chem. Eng. 4 (2016) 4554. https://doi.org/10.1021/acssuschemeng.6b00601
  5. Y. Kim, J. Ryu, Mol. Cell. Toxicol. 3 (2017) 113.
  6. O.V. Netskina, E.S. Tayban, A.P. Moiseenko, O.V. Komova, S.A. Mukha, V.I. Simagina, J. Hazard. Mater. 285 (2015) 84. https://doi.org/10.1016/j.jhazmat.2014.10.017
  7. C.M. Young, K.J. Voorhees, Chemosphere 24 (1992) 525. https://doi.org/10.1016/0045-6535(92)90209-A
  8. F. Zhang, X. Li, Q. Zhao, A. Chen, J. Phys. Chem. C 120 (2016) 19113. https://doi.org/10.1021/acs.jpcc.6b03618
  9. Z. Kurt, J.C. Spain, Environ. Sci. Technol. 47 (2013) 6846. https://doi.org/10.1021/es3049465
  10. Y. Yang, G. Yu, S. Deng, S. Wang, Z. Xu, J. Huang, B. Wang, Chem. Eng. J. 192 (2012) 284. https://doi.org/10.1016/j.cej.2012.03.069
  11. Z. Xu, S. Deng, Y. Yang, T. Zhang, Q. Cao, J. Huang, G. Yu, Chemosphere 87 (2012) 1032.
  12. W. Deng, Q. Dai, Y. Lao, B. Shi, X. Wang, Appl. Catal. B: Environ. 181 (2016) 848. https://doi.org/10.1016/j.apcatb.2015.07.053
  13. X. Wang, Q. Kang, D. Li, Appl. Catal. B: Environ. 86 (2009) 166. https://doi.org/10.1016/j.apcatb.2008.08.009
  14. T. Cai, H. Huang, W. Deng, Q. Dai, W. Liu, X. Wang, Appl. Catal. B: Environ. 166-167 (2015) 393. https://doi.org/10.1016/j.apcatb.2014.10.047
  15. Q. Dai, W. Wang, X. Wang, G. Lu, Appl. Catal. B: Environ. 203 (2017) 31. https://doi.org/10.1016/j.apcatb.2016.10.009
  16. J. Wang, X. Wang, X. Liua, J. Zeng, Y. Guo, T. Zhu, J. Mol. Catal. A: Chem. 402 (2015) 1. https://doi.org/10.1016/j.molcata.2015.03.003
  17. A. Tang, L. Hu, X. Yang, Y. Jia, Y. Zhang, Catal. Commun. 82 (2016) 41. https://doi.org/10.1016/j.catcom.2016.04.015
  18. L. Wu, F. He, J. Luo, S. Liu, RSC Adv. 7 (2017) 26952. https://doi.org/10.1039/C7RA02299A
  19. Y. Dai, X. Wang, Q. Dai, D. Li, Appl. Catal. B: Environ. 111 (2012) 141.
  20. P. Yang, S. Yang, Z. Shi, Z. Meng, R. Zhou, Appl. Catal. B: Environ. 162 (2015) 227. https://doi.org/10.1016/j.apcatb.2014.06.048
  21. S. Moon, G. Lee, S. Park, S. Hong, J. Ind. Eng. Chem. 10 (2004) 661.
  22. X. Weng, P. Sun, Y. Long, Q. Meng, Z. Wu, Environ. Sci. Technol. 51 (2017) 8057. https://doi.org/10.1021/acs.est.6b06585
  23. N. Drenchev, I. Spassova, E. Ivanova, M. Khristova, K. Hadjiivanov, Appl. Catal. B: Environ. 138 (2013) 362.
  24. F. He, J. Luo, S. Liu, Chem. Eng. J. 294 (2016) 362. https://doi.org/10.1016/j.cej.2016.02.068
  25. Y. Ren, A. Tang, L. Hu, H. Xiang, RSC Adv. 6 (2016) 46822. https://doi.org/10.1039/C6RA02256A
  26. X. Wang, L. Ran, Y. Dai, Y. Lu, Q. Dai, J. Colloid Interface Sci. 426 (2014) 324. https://doi.org/10.1016/j.jcis.2013.10.007
  27. P. Sun, W. Wang, X. Dai, X. Weng, Z. Wu, Appl. Catal. B: Environ.198 (2016) 389. https://doi.org/10.1016/j.apcatb.2016.05.076
  28. X. Zhang, B. Gao, A. Creamer, C. Cao, Y. Li, J. Hazard. Mater. 338 (2017) 102.
  29. X. Zhou, X. Huang, A. Xie, S. Luo, C. Yao, X. Li, S. Zuo, Chem. Eng. J. 326 (2017) 1074.
  30. F. He, Y. Chen, P. Zhao, S. Liu, J. Nanopart. Res. 18 (2016) 119. https://doi.org/10.1007/s11051-016-3428-8
  31. Z. Shi, P. Yang, F. Tao, R. Zhou, Chem. Eng. J. 295 (2016) 99. https://doi.org/10.1016/j.cej.2016.03.032
  32. Y. Dai, X. Wang, D. Li, Q. Dai, J. Hazard. Mater. 188 (2011) 132. https://doi.org/10.1016/j.jhazmat.2011.01.084
  33. H. Huang, Q. Dai, X. Wang, Appl. Catal. B: Environ. 158 (2014) 96.
  34. S. Cai, D. Zhang, L. Zhang, L. Huang, H. Li, R. Gao, L. Shi, J. Zhang, Catal. Sci. Technol. 4 (2014) 93. https://doi.org/10.1039/C3CY00398A
  35. P. Yang, S. Yang, Z. Shi, Z. Meng, R. Zhou, Appl. Catal. B: Environ. 162 (2015) 227. https://doi.org/10.1016/j.apcatb.2014.06.048
  36. C. Gannoun, R. Delaigle, D.P. Debecker, P. Eloy, A. Ghorbel, E.M. Gaigneaux, Appl. Catal. A: Gen. 447-448 (2012) 1. https://doi.org/10.1016/j.apcata.2012.08.034
  37. B. Li, Q. Huang, X. Yan, X. Xu, Y. Qiu, B. Yang, Y. Chen, S. Zhu, S. Shen, J. Ind. Eng. Chem. 20 (2014) 2359. https://doi.org/10.1016/j.jiec.2013.10.013
  38. S. Lomate, A. Sultana, T. Fujitani, Catal. Sci. Technol. 7 (2017) 3073. https://doi.org/10.1039/C7CY00902J
  39. M. Itoh, H. Hattori, K. Tanabe, J. Catal. 35 (1974) 225. https://doi.org/10.1016/0021-9517(74)90201-2
  40. P. Li, C. He, J. Cheng, C. Ma, B. Dou, Z. Hao, Appl. Catal. B: Environ. 101 (2011) 570. https://doi.org/10.1016/j.apcatb.2010.10.030
  41. B. Rivas, R. Lopez-Fonseca, J. Gonzalez-Velasco, J. Gutierrez-Ortiz, J. Mol. Catal. A: Chem. 278 (2007) 181. https://doi.org/10.1016/j.molcata.2007.09.006
  42. L. Jiang, G. Nie, R. Zhu, J. Wang, J. Chen, Y. Mao, Z. Cheng, W. Anderson, J. Environ. Sci. 55 (2017) 266. https://doi.org/10.1016/j.jes.2016.07.014
  43. J. Kan, L. Deng, B. Li, Q. Huang, S. Zhu, S. Shen, Y. Chen, Appl. Catal. A: Gen. 530 (2017) 21. https://doi.org/10.1016/j.apcata.2016.11.013
  44. S. Krishnamoorthy, J. Rivas, M. Amiridis, J. Catal. 193 (2000) 264. https://doi.org/10.1006/jcat.2000.2895
  45. S. Albonetti, S. Blasioli, R. Bonelli, J.E. Mengou, S. Scire, F. Trifiro, Appl. Catal. A: Gen. 341 (2008) 18. https://doi.org/10.1016/j.apcata.2007.12.033
  46. G. Sinquin, C. Petit, S. Libs, J.P. Hindermann, A. Kiennemann, Appl. Catal. B: Environ. 32 (2001) 37. https://doi.org/10.1016/S0926-3373(00)00293-9
  47. S. Lu, Q. Wang, W. Stevens, C. Lee, B. Gullett, Y. Zhao, Appl. Catal. B: Environ. 147 (2014) 322. https://doi.org/10.1016/j.apcatb.2013.08.047
  48. T. Zhang, F. Qiu, J. Li, Appl. Catal. B: Environ. 195 (2016) 48. https://doi.org/10.1016/j.apcatb.2016.04.058
  49. Q. Dai, S. Bai, Z. Wang, X. Wang, G. Lu, Appl. Catal. B: Environ. 126 (2012) 64. https://doi.org/10.1016/j.apcatb.2012.07.008
  50. J. Li, P. Zhao, S. Liu, Appl. Catal. A: Gen. 482 (2014) 363. https://doi.org/10.1016/j.apcata.2014.06.013
  51. M. Wu, X. Wang, Q. Dai, D. Li, Catal. Commun. 11 (2010) 1022.