DOI QR코드

DOI QR Code

A review of approaches for the design of high-performance metal/graphene electrocatalysts for fuel cell applications

  • Liu, Jiamin (Department of Chemical Engineering, Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University) ;
  • Choi, Hyoung Jin (Department of Polymer Science and Engineering, Inha University) ;
  • Meng, Long-Yue (Department of Chemical Engineering, Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University)
  • Received : 2017.11.26
  • Accepted : 2018.02.10
  • Published : 2018.08.25

Abstract

Metal/graphene electrocatalysts have attracted growing attention in recent years due to their high catalyst loadings, good activity, and high stabilities. In this review, we summarize various approaches towards improving the efficiencies of metal/graphene electrocatalysts in terms of both cost and performance, based on optimization of the graphene support and the metal catalyst particles themselves. Thus, four different approaches are examined: (1) increasing the catalyst/support binding energy, (2) inducing additional anchoring and active sites, (3) enlarging the effective catalyst surface areas, and (4) enhancing the intrinsic catalytic activity through modification of the electronic structure. Finally, remarks on necessary future work in this area will be given in the context of producing metal/graphene electrocatalysts better suited to fuel cell applications.

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. D.J. Kim, M.J. Jo, S.Y. Nam, J. Ind. Eng. Chem. 21 (2015) 36. https://doi.org/10.1016/j.jiec.2014.04.030
  2. J.J. Lv, N. Wisitruangsakul, J.J. Feng, J. Luo, K.M. Fang, A.J. Wang, Electrochim. Acta 160 (2015) 100. https://doi.org/10.1016/j.electacta.2015.02.052
  3. Z.Y. Zhou, Z.Z. Huang, D.J. Chen, Q. Wang, N. Tian, S.G. Sun, Angew. Chem. Int. Ed. 49 (2010) 411. https://doi.org/10.1002/anie.200905413
  4. S. Ali, R. Ahmed, M. Sohail, S.A. Khan, M.S. Ansari, J. Ind. Eng. Chem. 28 (2015) 344. https://doi.org/10.1016/j.jiec.2015.03.014
  5. F. Yang, K. Cheng, X. Xiao, J.L. Yin, G.L. Wang, D.X. Cao, J. Power Sources 245 (2014) 89. https://doi.org/10.1016/j.jpowsour.2013.06.115
  6. Q. Wang, Y. Song, H. Xie, Y.Q. Chai, Y.L. Yuan, R. Yuan, Chem. Commun. 51 (2015) 1255. https://doi.org/10.1039/C4CC07753A
  7. C. Alegre, D. Sebastian, M.E. Galvez, E. Baquedano, R. Moliner, A.S. Arico, V. Baglio, M.J. Lazaro, Materials 10 (2017) 1092. https://doi.org/10.3390/ma10091092
  8. Q.Z. Sun, S. Kim, Electrochim. Acta 153 (2015) 566. https://doi.org/10.1016/j.electacta.2014.11.077
  9. Q.Z. Sun, S.J. Park, S. Kim, J. Ind. Eng. Chem. 26 (2015) 265. https://doi.org/10.1016/j.jiec.2014.12.002
  10. Y. Qin, L. Chao, J.J. He, Y. Liu, F.Q. Chu, J.Y. Cao, Y. Kong, Y.X. Tao, J. Power Sources 335 (2016) 31. https://doi.org/10.1016/j.jpowsour.2016.10.038
  11. N. Seselj, C. Engelbrekt, J. Zhang, Sci. Bull. 60 (2015) 864. https://doi.org/10.1007/s11434-015-0745-8
  12. D. Higgins, P. Zamani, A. Yu, Z. Chen, Energy Environ. Sci. 9 (2016) 357. https://doi.org/10.1039/C5EE02474A
  13. J. Wei, Z.G. Zang, Y.B. Zhang, M. Wang, J.H. Du, X.S. Tang, Opt. Lett. 42 (2017) 911. https://doi.org/10.1364/OL.42.000911
  14. Z. Zang, X. Zeng, M. Wang, W. Hu, C. Liu, X. Tang, Sens. Actuators B: Chem. 252 (2017) 1179. https://doi.org/10.1016/j.snb.2017.07.144
  15. H. Huang, J. Zhang, L. Jiang, Z. Zang, J. Alloys Compd. 718 (2017) 112. https://doi.org/10.1016/j.jallcom.2017.05.132
  16. W.L. Zhang, C. Xu, C.Q. Ma, G.X. Li, Y.Z. Wang, K.Y. Zhang, F. Li, C. Liu, H.M. Cheng, Y.W. Du, N.J. Tang, W.C. Ren, Adv. Mater. 29 (2017) 1701677. https://doi.org/10.1002/adma.201701677
  17. S. Homaeigohar, M. Elbahri, NPG Asia Mater. 9 (2017) 427. https://doi.org/10.1038/am.2017.135
  18. Y. Wang, Q. Yang, C. Zhong, J. Li, Appl. Surf. Sci. 407 (2017) 532. https://doi.org/10.1016/j.apsusc.2017.02.253
  19. J.L. Xie, X.J. Yang, X.Y. Xu, C. Yang, Int. J. Electrochem. Sci. 12 (2017) 466.
  20. X.S. Tang, Z.Q. Zu, Z.G. Zang, Z.P. Hu, W. Hu, Z.Q. Yao, W.W. Chen, S.Q. Li, S. Han, M. Zhou, Sens. Actuators B 245 (2017) 435. https://doi.org/10.1016/j.snb.2017.01.168
  21. B.D. Guo, L. Fang, B.H. Zhang, J.R. Gong, Insci. J. 1 (2011) 80.
  22. Y.N. Tang, Z.X. Yang, X.Q. Dai, Phys. Chem. Chem. Phys. 14 (2012) 16566. https://doi.org/10.1039/c2cp41441d
  23. S. Agnoli, M. Favaro, J. Mater. Chem. A 4 (2016) 5002. https://doi.org/10.1039/C5TA10599D
  24. S. Sahoo, J.J. Shim, J. Ind. Eng. Chem. 54 (2017) 205. https://doi.org/10.1016/j.jiec.2017.05.035
  25. Z. Yu, Y. Bai, Y.X. Wang, Y.X. Liu, Y.L. Zhao, Y. Liu, K.N. Sun, Chem. Eng. J. 311 (2017) 302. https://doi.org/10.1016/j.cej.2016.11.093
  26. G. Zhang, W.T. Lu, F.F. Cao, Z.D. Xiao, X.S. Zheng, J. Power Sources 302 (2016) 114. https://doi.org/10.1016/j.jpowsour.2015.10.055
  27. J.G. Yu, M.M. Jia, T.M. Dai, F.M. Qin, Y.N. Zhao, J. Solid State Electr. 21 (2017) 967. https://doi.org/10.1007/s10008-016-3449-3
  28. J.W. Liang, M. Hassan, D.S. Zhu, L.P. Guo, X.J. Bo, J. Colloid Interface Sci. 490 (2017) 576. https://doi.org/10.1016/j.jcis.2016.11.101
  29. Q. Wang, Y. Tian, G.J. Chen, J.X. Zhao, Appl. Surf. Sci. 397 (2017) 199. https://doi.org/10.1016/j.apsusc.2016.11.048
  30. R. Kumar, E.T.S.G. da Silva, R.K. Singh, R. Savu, A.V. Alaferdov, L.C. Fonseca, L.C. Carossi, A. Singh, S. Khandka, K.K. Kar, O.L. Alves, L.T. Kubota, S.A. Moshkalev, J. Colloid Interface Sci. 515 (2018) 160. https://doi.org/10.1016/j.jcis.2018.01.028
  31. L.T. Soo, K.S. Loh, A.B. Mohamad, W.R.W. Daud, W.Y. Wong, Appl. Catal. A: Gen. 497 (2015) 198. https://doi.org/10.1016/j.apcata.2015.03.008
  32. X.L. Chen, G.M. Yang, S.P. Feng, L. Shi, Z.L. Huang, H.B. Pan, W. Liu, Appl. Surf. Sci. 402 (2017) 232. https://doi.org/10.1016/j.apsusc.2017.01.087
  33. X.J. Bo, M. Li, C. Han, L.P. Guo, Electrochim. Acta 114 (2013) 582. https://doi.org/10.1016/j.electacta.2013.10.088
  34. A. Pullamsetty, M. Subbiah, R. Sundara, Int. J. Hydrogen Energy 40 (2015) 10251. https://doi.org/10.1016/j.ijhydene.2015.06.020
  35. H.N. Yang, W.J. Kim, Electrochim. Acta 209 (2016) 430. https://doi.org/10.1016/j.electacta.2016.05.114
  36. C.L. Sun, J.S. Tang, N. Brazeau, J.J. Wu, S. Ntais, C.W. Yin, H.L. Chou, E.A. Baranova, Electrochim. Acta 162 (2015) 282. https://doi.org/10.1016/j.electacta.2014.12.099
  37. D. Higgins, M.A. Hoque, M.H. Seo, R. Wang, F. Hassan, J.Y. Choi, M. Pritzker, A.P. Yu, J.J. Zhang, Z.W. Chen, Adv. Funct. Mater. 24 (2014) 4325. https://doi.org/10.1002/adfm.201400161
  38. M.A. Hoque, F.M. Hassan, D. Higgins, J.Y. Choi, M. Pritzker, S. Knights, S.Y. Ye, Z. W. Chen, Adv. Mater. 27 (2015) 1229. https://doi.org/10.1002/adma.201404426
  39. M.A. Hoque, F.M. Hassan, M.H. Seo, J.Y. Choi, M. Pritzker, S. Knights, S.Y. Ye, Z. W. Chen, Nano Energy 19 (2016) 27. https://doi.org/10.1016/j.nanoen.2015.11.004
  40. Y.L. Li, W.H. Li, T.G. Ke, P.X. Zhang, X.Z. Ren, L.B. Deng, Electrochem. Commun. 69 (2016) 68. https://doi.org/10.1016/j.elecom.2016.06.006
  41. C. Xu, M.A. Hoque, G. Chiu, T. Sung, Z.W. Chen, RSC Adv. 6 (2016) 112226. https://doi.org/10.1039/C6RA19924K
  42. X. Zhang, J.X. Zhu, C.S. Tiwary, Z.Y. Ma, H.J. Huang, J.F. Zhang, Z.Y. Lu, W. Huang, Y.P. Wu, ACS Appl. Mater. Interfaces 8 (2016) 10858. https://doi.org/10.1021/acsami.6b01580
  43. J.L. Zhu, G.Q. He, Z.Q. Tian, L.Z. Liang, P.K. Shen, Electrochim. Acta 194 (2016) 276. https://doi.org/10.1016/j.electacta.2016.01.222
  44. Y.X. Jin, D.M. Han, W.P. Jia, G.B. Huang, F. Li, X.Y. Chen, R.R. Li, M.M. Zheng, W.Y. Gao, J. Electrochem. Soc. 164 (2017) F638. https://doi.org/10.1149/2.1351706jes
  45. J.X. Zhang, X.L. Yang, H.F. Shao, C.C. Tseng, D.S. Wang, S.S. Tian, W.J. Hu, C. Jing, J.N. Tian, Y.C. Zhao, Fuel Cells 17 (2017) 115. https://doi.org/10.1002/fuce.201600153
  46. Q. Liu, J.C. Fan, Y.L. Min, T. Wu, Y. Lin, Q.J. Xu, J. Mater. Chem. A 4 (2016) 4929. https://doi.org/10.1039/C6TA01136E
  47. J.M. Chabu, L.Q. Wang, F.Y. Tang, K. Zeng, J.P. Sheng, M.D. Walle, L. Deng, Y.N. Liu, ChemElectroChem 4 (2017) 1885. https://doi.org/10.1002/celc.201700002
  48. D. Park, M.S. Ahmed, S. Jeon, Int. J. Hydrogen Energy 42 (2017) 2061. https://doi.org/10.1016/j.ijhydene.2016.09.175
  49. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 106 (2006) 1105. https://doi.org/10.1021/cr050569o
  50. Y.F. Fan, Y.C. Zhao, D.H. Chen, X. Wang, X.L. Peng, J.N. Tian, Int. J. Hydrogen Energy 40 (2015) 322. https://doi.org/10.1016/j.ijhydene.2014.10.115
  51. L. Zeng, T.S. Zhao, L. An, G. Zhao, X.H. Yan, C.Y. Jung, J. Power Sources 275 (2015) 506. https://doi.org/10.1016/j.jpowsour.2014.11.021
  52. K.Y. Cho, Y.s. Yeom, H.y. Seo, A.S. Lee, D.x. Huy, J.P. Hong, H.W. Jeong, K.Y. Baek, H.G. Yoon, Electrochim. Acta 257 (2017) 412. https://doi.org/10.1016/j.electacta.2017.10.075
  53. M. Ayan-Varela, R. Ruiz-Rosas, S. Villar-Rodil, J.I. Paredes, D. Cazorla-Amoros, E. Morallon, A. Martinez-Alonso, J.M.D. Tascon, Electrochim. Acta 231 (2017) 386. https://doi.org/10.1016/j.electacta.2016.12.177
  54. J.E. Choe, M.S. Ahmed, S. Jeon, J. Power Sources 281 (2015) 211. https://doi.org/10.1016/j.jpowsour.2015.01.176
  55. F. Lu, Y. Zhang, S.Z. Liu, D.Y. Lu, D. Su, M.Z. Liu, Y.G. Zhang, P. Liu, J.X. Wang, R.R. Adzic, O. Gang, J. Am. Chem. Soc. 139 (2017) 7310. https://doi.org/10.1021/jacs.7b01735
  56. M. Terrones, A.R. Botello-Mendez, J. Campos-Delgado, F. Lopez-Urias, Y.I. Vega-Cantu, F.J. Rodriguez-Macias, A.L. Elias, E. Munoz-Sandovald, A.G. Cano-Marquez, J.C. Charlier, H. Terrones, Nano Today 5 (2010) 351. https://doi.org/10.1016/j.nantod.2010.06.010
  57. X.L. Fan, W.Y. Yuan, D.H. Zhang, C. Ming, ACS Appl. Energy Mater. (2018), doi: http://dx.doi.org/10.1021/acsaem.7b00081. https://doi.org/10.1021/acsaem.7b00081
  58. Y.J. Wang, B.Z. Fang, H. Li, X.T.T. Bi, H.J. Wang, Chem. Rev. 115 (2015) 3433. https://doi.org/10.1021/cr500519c
  59. S. Hussain, H. Erikson, N. Kongi, M. Merisalu, P. Ritslaid, V. Sammelselg, K. Tammeveski, Int. J. Hydrogen Energy 42 (2017) 5958. https://doi.org/10.1016/j.ijhydene.2016.11.164
  60. G.Q. He, Y. Song, K. Liu, A. Walter, S. Chen, S.W. Chen, ACS Catal. 3 (2013) 831. https://doi.org/10.1021/cs400114s
  61. N.F. Zhuang, C.C. Liu, L.N. Jia, L. Wei, J.D. Cai, Y.L. Guo, Y.F. Zhang, X.L. Hu, J.Z. Chen, X.D. Chen, Y.X. Tang, Nanotechnology 24 (2013) 325604. https://doi.org/10.1088/0957-4484/24/32/325604
  62. H.D. Jang, S.K. Kim, H. Chang, J.H. Choi, B.G. Cho, E.H. Jo, J.W. Choi, J.X. Huang, Carbon 93 (2015) 869. https://doi.org/10.1016/j.carbon.2015.06.009
  63. Z.H. Wang, G.Y. Shi, F.F. Zhang, J.F. Xia, R.J. Gui, M. Yang, S. Bi, L. Xia, Y.H. Li, L.H. Xia, Y.Z. Xia, Electrochim. Acta 160 (2015) 288. https://doi.org/10.1016/j.electacta.2015.02.009
  64. L. Zhao, X.L. Sui, J.L. Li, J.J. Zhang, L.M. Zhang, Z.B. Wang, Catal. Commun. 86 (2016) 46. https://doi.org/10.1016/j.catcom.2016.08.011
  65. Q. Liu, Y. Lin, J.C. Fan, D. Lv, Y.L. Min, T. Wu, Q.J. Xu, Electrochem. Commun. 73 (2016) 75. https://doi.org/10.1016/j.elecom.2016.10.017
  66. S. Kabir, A. Serov, A. Zadick, K. Artyushkova, P. Atanassov, ChemElectroChem 3 (2016) 1655. https://doi.org/10.1002/celc.201600245
  67. Y.H. Kwok, A.C.H. Tsang, Y.F. Wang, D.Y.C. Leung, J. Power Sources 349 (2017) 75. https://doi.org/10.1016/j.jpowsour.2017.03.030
  68. X. Tong, Q.L. Wei, X.X. Zhan, G.X. Zhang, S.H. Sun, Catalysts 7 (2016) 1. https://doi.org/10.3390/catal7010001
  69. Y.J. Tak, S. Yang, H. Lee, D.H. Lim, A. Soon, J. Ind. Eng. Chem. 58 (2018) 208-215. https://doi.org/10.1016/j.jiec.2017.09.027
  70. P. Wu, P. Du, H. Zhang, C.X. Cai, Phys. Chem. Chem. Phys. 17 (2015) 1441. https://doi.org/10.1039/C4CP04181J
  71. X.F. Yang, A.Q. Wang, B.T. Qiao, J. Li, J.Y. Liu, T. Zhang, Acc. Chem. Res. 46 (2013) 1740. https://doi.org/10.1021/ar300361m
  72. S.H. Sun, G.X. Zhang, N. Gauquelin, N. Chen, J.G. Zhou, S.L. Yang, W.F. Chen, X. B. Meng, D.S. Geng, M.N. Banis, R.Y. Li, S.Y. Ye, S. Knights, G.A. Botton, T.K. Sham, X.L. Sun, Sci. Rep. 3 (2013) 1775. https://doi.org/10.1038/srep01775
  73. C.H. Zhang, J.W. Sha, H.L. Fei, M.J. Liu, S. Yazdi, J.B. Zhang, Q.F. Zhong, X.L. Zou, N.Q. Zhao, H.S. Yu, Z. Jiang, E. Ringe, B.I. Yakobson, J.C. Dong, D.L. Chen, J.M. Tour, ACS Nano 11 (2017) 6930. https://doi.org/10.1021/acsnano.7b02148
  74. Y. Yang, L.M. Luo, R.H. Zhang, J.J. Du, P.C. Shen, Z.X. Dai, C.H. Sun, X.W. Zhou, Electrochim. Acta 222 (2016) 1094. https://doi.org/10.1016/j.electacta.2016.11.080
  75. J.J. Lv, S.S. Li, J.N. Zheng, A.J. Wang, J.R. Chen, J.J. Feng, Int. J. Hydrogen Energy 39 (2014) 3211. https://doi.org/10.1016/j.ijhydene.2013.12.112
  76. P. Song, L. Liu, A.J. Wang, X. Zhang, S.Y. Zhou, J.J. Feng, Electrochim. Acta 164 (2015) 323. https://doi.org/10.1016/j.electacta.2015.02.229
  77. K. Wu, Q. Zhang, D.M. Sun, X.S. Zhu, Y. Chen, T.H. Lu, Y.W. Tang, Int. J. Hydrogen Energy 40 (2015) 6530. https://doi.org/10.1016/j.ijhydene.2015.03.115
  78. K.J. Ju, L. Liu, J.J. Feng, Q.L. Zhang, J. Wei, A.J. Wang, Electrochim. Acta 188 (2016) 696. https://doi.org/10.1016/j.electacta.2015.11.126
  79. L.T. Sun, H.J. Wang, K. Eid, S.M. Alshehri, V. Malgras, Y. Yamauchi, L. Wang, Electrochim. Acta 188 (2016) 845. https://doi.org/10.1016/j.electacta.2015.12.068
  80. J.J. Feng, L.X. Chen, X.H. Ma, J.H. Yuan, J.R. Chen, A.J. Wang, Q.Q. Xu, Int. J. Hydrogen Energy 42 (2017) 1120. https://doi.org/10.1016/j.ijhydene.2016.08.066
  81. J.T. Zhong, D. Bin, F.F. Ren, C.Q. Wang, C.Y. Zhai, P. Yang, Y.K. Du, Colloids Surf. A 488 (2016) 1. https://doi.org/10.1016/j.colsurfa.2015.09.069
  82. Y. Shen, B. Gong, K.J. Xiao, L. Wang, ACS Appl. Mater. Interfaces 9 (2017) 3535. https://doi.org/10.1021/acsami.6b09573
  83. D. Qazzazie, O. Yurchenko, S. Urban, J. Kieninger, G. Urban, Nanoscale (2017) 6436.
  84. Y.Z. Lu, Y.Y. Jiang, H.B. Wu, W. Chen, J. Phys. Chem. C 117 (2013) 2926.
  85. H.J. Huang, L.L. Ma, C.S. Tiwary, Q.G. Jiang, K.B. Yin, W. Zhou, P.M. Ajayan, Small 13 (2017) 1603013. https://doi.org/10.1002/smll.201603013
  86. D.Y. Wang, H.L. Chou, C.C. Cheng, Y.H. Wu, C.M. Tsai, H.Y. Lin, Y.L. Wang, B.J. Hwang, C.C. Chen, Nano Energy 11 (2015) 631. https://doi.org/10.1016/j.nanoen.2014.11.040
  87. C.M. Wang, S. Bai, Y.J. Xiong, Chin. J. Catal. 36 (2015) 1476. https://doi.org/10.1016/S1872-2067(15)60911-1
  88. S. Liu, N. Tian, A.Y. Xie, J.H. Du, J. Xiao, L. Liu, H.Y. Sun, Z.Y. Cheng, Z.Y. Zhou, S.G. Sun, J. Am. Chem. Soc. 138 (2016) 5753. https://doi.org/10.1021/jacs.5b13473
  89. Y.J. Kang, P.D. Yang, N.M. Markovic, V.R. Stamenkovic, Nano Today 11 (2016) 587. https://doi.org/10.1016/j.nantod.2016.08.008
  90. A.J. Medford, A. Vojvodic, J.S. Hummelshoj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson, J.K. Norskov, J. Catal. 328 (2015) 36. https://doi.org/10.1016/j.jcat.2014.12.033
  91. C.H. Liu, X.L. Cai, J.S. Wang, J. Liu, A. Riese, Z.D. Chen, X.L. Sun, S.D. Wang, Int. J. Hydrogen Energy 41 (2016) 13476. https://doi.org/10.1016/j.ijhydene.2016.05.194
  92. R. Baronia, J. Goel, S. Tiwari, P. Singh, D. Singh, S.P. Singh, S.K. Singhal, Int. J. Hydrogen Energy 42 (2017) 10238. https://doi.org/10.1016/j.ijhydene.2017.03.011
  93. F.H.B. Lima, W.H. Lizcano-Valbuena, E. Teixeira-Neto, F.C. Nart, E.R. Gonzalez, E.A. Ticianelli, Electrochim. Acta 52 (2006) 385. https://doi.org/10.1016/j.electacta.2006.05.019
  94. A.B. Yousaf, M. Imran, A. Zeb, T. Wen, X. Xie, Y.F. Jiang, C.Z. Yuan, A.W. Xu, Electrochim. Acta 197 (2016) 117. https://doi.org/10.1016/j.electacta.2016.03.067
  95. Y.P. Yang, P. Cheng, S.P. Huag, J. Alloys Compd. 688 (2016) 1172. https://doi.org/10.1016/j.jallcom.2016.07.157
  96. X. Zhang, B. Zhang, D.Y. Liu, J.L. Qiao, Electrochim. Acta 177 (2015) 93. https://doi.org/10.1016/j.electacta.2015.02.046
  97. Q.Q. Xia, L.Y. Zhang, Z.L. Zhao, C.M. Li, J. Colloid Interface Sci. 506 (2017) 135. https://doi.org/10.1016/j.jcis.2017.06.098
  98. K.Y. Cho, Y.Y. Yeom, H.Y. Seo, A.L. See, D.X. Huy, J.P. Hong, H.K. Jeong, K.Y. Baek, H.G. Yoon, Electrochim. Acta 257 (2017) 412. https://doi.org/10.1016/j.electacta.2017.10.075
  99. M. Martins, B. Sljukic, O. Metin, M. Sevim, C.A.C. Sequeira, T. Sener, D.M.F. Santos, J. Alloys Compd. 718 (2017) 204. https://doi.org/10.1016/j.jallcom.2017.05.058
  100. W.X. Ji, C.W. Zhang, F. Li, P. Li, P.J. Wang, M.J. Ren, M. Yuan, RSC Adv. 4 (2014) 55781. https://doi.org/10.1039/C4RA07996E
  101. P. Raghavendra, G.V. Reddy, R. Sivasubramanian, P.S. Chandana, L.S. Sarma, ChemistrySelect 2 (2017) 11762. https://doi.org/10.1002/slct.201702636
  102. M.G. Hosseini, N. Rashidi, R. Mahmoodi, M. Omer, Mater. Chem. Phys. (2018), doi:http://dx.doi.org/10.1016/j.matchemphys.2018.01.018. https://doi.org/10.1016/j.matchemphys.2018.01.018
  103. M. Dorraji, K. Kakaei, Electrochim. Acta 143 (2014) 207. https://doi.org/10.1016/j.electacta.2014.07.134
  104. H.Y. Na, L. Zhang, H.X. Qiu, T. Wu, M.X. Chen, N. Yang, L.Z. Li, F.B. Xing, J.P. Gao, J. Power Sources 288 (2015) 160. https://doi.org/10.1016/j.jpowsour.2015.04.116
  105. K. Gopalsamy, J. Balamurugan, T.D. Thanh, N.H. Kim, D. Hui, J.H. Lee, Compos. B 114 (2017) 319. https://doi.org/10.1016/j.compositesb.2017.01.061
  106. Y. Kim, Y. Noh, E.J. Lim, S. Lee, S.M. Choi, W.B. Kim, J. Mater. Chem. A 2 (2014) 6976. https://doi.org/10.1039/C4TA00070F
  107. R.G. Chaudhuri, S. Paria, Chem. Rev. 112 (2012) 2373. https://doi.org/10.1021/cr100449n
  108. Q. Liu, Y.R. Xu, A.J. Wang, J.J. Feng, J. Power Sources 302 (2016) 394. https://doi.org/10.1016/j.jpowsour.2015.10.079
  109. K.Y. Cho, Y.S. Yeom, H.Y. Seo, P. Kumar, A.S. Lee, K.Y. Baek, H.G. Yoon, J. Mater. Chem. A 9 (2017) 1524.
  110. D.N. Li, A.J. Wang, J. Wei, Q.L. Zhang, J.J. Feng, J. Colloid Interface Sci. 514 (2018) 93. https://doi.org/10.1016/j.jcis.2017.11.077
  111. J.J. Feng, S.S. Chen, X.L. Chen, X.F. Zhang, A.J. Wang, J Colloid Interface Sci. 509 (2018) 73. https://doi.org/10.1016/j.jcis.2017.08.059
  112. T.D. Thanh, N.D. Chuong, H.V. Hien, N.H. Kim, J.H. Lee, ACS Appl. Mater. Interfaces (2018), doi:http://dx.doi.org/10.1021/acsami.7b16294. https://doi.org/10.1021/acsami.7b16294
  113. J.H. Yang, X.J. Chen, X.F. Yang, J.Y. Ying, Energy Environ. Sci. 5 (2012) 8976. https://doi.org/10.1039/c2ee22172a
  114. R. Ojani, R. Valiollahi, J.B. Raoof, Energy 74 (2014) 871. https://doi.org/10.1016/j.energy.2014.07.062
  115. S.S. Li, J.Y. Yu, Y.Y. Hu, A.J. Wang, J.R. Chen, J.J. Feng, J. Power Sources 254 (2014) 119. https://doi.org/10.1016/j.jpowsour.2013.12.098
  116. Y.Q. Jiang, X.L. Fan, X.Z. Xiao, T. Qin, L.T. Zhang, F.L. Jiang, M. Li, S.Q. Li, H.W. Ge, L.X. Chen, J. Mater. Chem. A 4 (2016) 657. https://doi.org/10.1039/C5TA09159D
  117. X.H. Xia, Y. Wang, A. Ruditskiy, Y.N. Xia, Adv. Mater. 25 (2013) 6313. https://doi.org/10.1002/adma.201302820