Effects of Three Thiazolidinediones on Metabolic Regulation and Cold-Induced Thermogenesis

  • Sohn, Jee Hyung (National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University) ;
  • Kim, Jong In (National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University) ;
  • Jeon, Yong Geun (National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University) ;
  • Park, Jeu (National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University) ;
  • Kim, Jae Bum (National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University)
  • Received : 2018.07.09
  • Accepted : 2018.08.03
  • Published : 2018.10.31


Insulin resistance is closely associated with metabolic diseases such as type 2 diabetes, dyslipidemia, hypertension and atherosclerosis. Thiazolidinediones (TZDs) have been developed to ameliorate insulin resistance by activation of peroxisome proliferator-activated receptor (PPAR) ${\gamma}$. Although TZDs are synthetic ligands for $PPAR{\gamma}$, metabolic outcomes of each TZD are different. Moreover, there are lack of head-to-head comparative studies among TZDs in the aspect of metabolic outcomes. In this study, we analyzed the effects of three TZDs, including lobeglitazone (Lobe), rosiglitazone (Rosi), and pioglitazone (Pio) on metabolic and thermogenic regulation. In adipocytes, Lobe more potently stimulated adipogenesis and insulin-dependent glucose uptake than Rosi and Pio. In the presence of pro-inflammatory stimuli, Lobe efficiently suppressed expressions of pro-inflammatory genes in macrophages and adipocytes. In obese and diabetic db/db mice, Lobe effectively promoted insulin-stimulated glucose uptake and suppressed pro-inflammatory responses in epididymal white adipose tissue (EAT), leading to improve glucose intolerance. Compared to other two TZDs, Lobe enhanced beige adipocyte formation and thermogenic gene expression in inguinal white adipose tissue (IAT) of lean mice, which would be attributable to cold-induced thermogenesis. Collectively, these comparison data suggest that Lobe could relieve insulin resistance and enhance thermogenesis at low-concentration conditions where Rosi and Pio are less effective.


Supported by : National Research Foundation of Korea (NRF)


  1. Ahmadian, M., Suh, J.M., Hah, N., Liddle, C., Atkins, A.R., Downes, M., and Evans, R.M. (2013). $PPAR{\gamma}$ signaling and metabolism: the good, the bad and the future. Nat. Med. 99, 557.
  2. Alfadda, A.A., Sallam, R.M., Gul, R., Hwang, I., and Ka, S. (2017). Endophilin A2: a potential link to adiposity and beyond. Mol. Cells 40, 855-863.
  3. Berria, R., Glass, L., Mahankali, A., Miyazaki, Y., Monroy, A., De Filippis, E., Cusi, K., Cersosimo, E., Defronzo, R.A., and Gastaldelli, A. (2007). Reduction in hematocrit and hemoglobin following pioglitazone treatment is not hemodilutional in Type II diabetes mellitus. Clin. Pharmacol. Therap. 82, 275-281.
  4. Bouhlel, M.A., Derudas, B., Rigamonti, E., Dievart, R., Brozek, J., Haulon, S., Zawadzki, C., Jude, B., Torpier, G., Marx, N., et al. (2007). $PPAR{\gamma}$ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metabol. 6, 137-143.
  5. Carriere, A., Jeanson, Y., Berger-Muller, S., Andre, M., Chenouard, V., Arnaud, E., Barreau, C., Walther, R., Galinier, A., Wdziekonski, B., et al. (2014). Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes 63, 3253-3265.
  6. Choe, S.S., Huh, J.Y., Hwang, I.J., Kim, J.I., and Kim, J.B. (2016). Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front. Endocrinol. 7, 30.
  7. Choi, J.H., Banks, A.S., Estall, J.L., Kajimura, S., Bostrom, P., Laznik, D., Ruas, J.L., Chalmers, M.J., Kamenecka, T.M., Bluher, M., et al. (2010). Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466, 451-456.
  8. Fonseca, V.A. (2009). Defining and characterizing the progression of type 2 diabetes. Diabetes Care 32 Suppl 2, S151-156.
  9. Gross, B., Pawlak, M., Lefebvre, P., and Staels, B. (2017). PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat. Rev. Endocrinol. 13, 36-49.
  10. He, H., Tao, H., Xiong, H., Duan, S.Z., McGowan, F.X., Jr., Mortensen, R.M., and Balschi, J.A. (2014). Rosiglitazone causes cardiotoxicity via peroxisome proliferator-activated receptor gamma-independent mitochondrial oxidative stress in mouse hearts. Toxicol. Sci. 138, 468-481.
  11. Huh, J.Y., Park, Y.J., Ham, M., and Kim, J.B. (2014). Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol. Cells 37, 365-371.
  12. Ikeda, K., Maretich, P., and Kajimura, S. (2018). The common and distinct features of brown and beige adipocytes. Trends Endocrinol. Metabol. 29, 191-200.
  13. Jang, J.Y., Bae, H., Lee, Y.J., Choi, Y.I., Kim, H.J., Park, S.B., Suh, S.W., Kim, S.W., and Han, B.W. (2018). Structural basis for the enhanced anti-diabetic efficacy of lobeglitazone on $PPAR{\gamma}$. Sci. Rep. 8, 31.
  14. Jenssen, T., and Hartmann, A. (2015). Emerging treatments for post-transplantation diabetes mellitus. Nat. Rev. Nephrol. 11, 465-477.
  15. Jin, S.M., Park, C.Y., Cho, Y.M., Ku, B.J., Ahn, C.W., Cha, B.S., Min, K.W., Sung, Y.A., Baik, S.H., Lee, K.W., et al. (2015). Lobeglitazone and pioglitazone as add-ons to metformin for patients with type 2 diabetes: a 24-week, multicentre, randomized, double-blind, parallel-group, active-controlled, phase III clinical trial with a 28-week extension. Diabetes Obes. Metabol. 17, 599-602.
  16. Kahn, S.E., Haffner, S.M., Heise, M.A., Herman, W.H., Holman, R.R., Jones, N.P., Kravitz, B.G., Lachin, J.M., O'Neill, M.C., Zinman, B., et al. (2006). Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl J. Med. 355, 2427-2443.
  17. Kim, J.I., Huh, J.Y., Sohn, J.H., Choe, S.S., Lee, Y.S., Lim, C.Y., Jo, A., Park, S.B., Han, W., and Kim, J.B. (2015a). Lipid-overloaded enlarged adipocytes provoke insulin resistance independent of inflammation. Mol. Cell Biol. 35, 1686-1699.
  18. Kim, S.H., Kim, S.G., Kim, D.M., Woo, J.T., Jang, H.C., Chung, C.H., Ko, K.S., Park, J.H., Park, Y.S., Kim, S.J., et al. (2015b). Safety and efficacy of lobeglitazone monotherapy in patients with type 2 diabetes mellitus over 52 weeks: An open-label extension study. Diabetes Res. Clin. Pract. 110, e27-30.
  19. Kim, G., Lee, Y.H., Yun, M.R., Lee, J.Y., Shin, E.G., Lee, B.W., Kang, E.S., and Cha, B.S. (2017a). Effects of lobeglitazone, a novel thiazolidinedione, on adipose tissue remodeling and brown and beige adipose tissue development in db/db mice. Int. J. Obes. 42, 545-551.
  20. Kim, K.M., Jin, H.J., Lee, S.Y., Maeng, H.J., Lee, G.Y., Oh, T.J., Choi, S.H., Jang, H.C., and Lim, S. (2017b). Effects of lobeglitazone, a new thiazolidinedione, on osteoblastogenesis and bone mineral density in mice. Endocrinol. Metabol. 32, 389-395.
  21. Kohlroser, J., Mathai, J., Reichheld, J., Banner, B.F., and Bonkovsky, H.L. (2000). Hepatotoxicity due to troglitazone: report of two cases and review of adverse events reported to the United States Food and Drug Administration. Am. J. Gastroenterol. 95, 272-276.
  22. Lee, H.W., Kim, B.Y., Ahn, J.B., Kang, S.K., Lee, J.H., Shin, J.S., Ahn, S.K., Lee, S.J., and Yoon, S.S. (2005). Molecular design, synthesis, and hypoglycemic and hypolipidemic activities of novel pyrimidine derivatives having thiazolidinedione. Eur. J. Med. Chem. 40, 862-874.
  23. Lee, J.H., Woo, Y.A., Hwang, I.C., Kim, C.Y., Kim, D.D., Shim, C.K., and Chung, S.J. (2009). Quantification of CKD-501, lobeglitazone, in rat plasma using a liquid-chromatography/tandem mass spectrometry method and its applications to pharmacokinetic studies. J. Pharm. Biomed. Anal. 50, 872-877.
  24. Lee, H.S., Chang, M., Lee, J.E., Kim, W., Hwang, I.C., Kim, D.H., Park, H.K., Choi, H.J., Jo, W., Cha, S.W., et al. (2014a). Carcinogenicity study of CKD-501, a novel dual peroxisome proliferator-activated receptors alpha and gamma agonist, following oral administration to Sprague Dawley rats for 94-101 weeks. Regul. Toxicol. Pharmacol. 69, 207-216.
  25. Lee, J.H., Lee, G.Y., Jang, H., Choe, S.S., Koo, S.H., and Kim, J.B. (2014b). RNF20 regulates hepatic lipid metabolism through PKA-dependent SREBP1c degradation. Hepatology 60, 844-857.
  26. Lee, M.A., Tan, L., Yang, H., Im, Y.G., and Im, Y.J. (2017). Structures of PPARgamma complexed with lobeglitazone and pioglitazone reveal key determinants for the recognition of antidiabetic drugs. Sci. Rep. 7, 16837.
  27. Lehmann, J.M., Moore, L.B., Smith-Oliver, T.A., Wilkison, W.O., Willson, T.M., and Kliewer, S.A. (1995). An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$). J. Biol. Chem. 270, 12953-12956.
  28. Li, Y., Wang, Z., Furukawa, N., Escaron, P., Weiszmann, J., Lee, G., Lindstrom, M., Liu, J., Liu, X., Xu, H., et al. (2008). T2384, a novel antidiabetic agent with unique peroxisome proliferator-activated receptor gamma binding properties. J. Biol. Chem. 283, 9168-9176.
  29. Lim, S., Lee, K.S., Lee, J.E., Park, H.S., Kim, K.M., Moon, J.H., Choi, S.H., Park, K.S., Kim, Y.B., and Jang, H.C. (2015). Effect of a new PPAR-gamma agonist, lobeglitazone, on neointimal formation after balloon injury in rats and the development of atherosclerosis. Atherosclerosis 243, 107-119.
  30. Moon, K.S., Lee, J.E., Lee, H.S., Hwang, I.C., Kim, D.H., Park, H.K., Choi, H.J., Jo, W., Son, W.C., and Yun, H.I. (2014). CKD-501, a novel selective PPARgamma agonist, shows no carcinogenic potential in ICR mice following oral administration for 104 weeks. J. Appl. Toxicol. 34, 1271-1284.
  31. Nedergaard, J., Petrovic, N., Lindgren, E.M., Jacobsson, A., and Cannon, B. (2005). $PPAR{\gamma}$ in the control of brown adipocyte differentiation. Biochim. Biophys. Acta. 1740, 293-304.
  32. Nissen, S.E., and Wolski, K. (2007). Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Eng. J. Med. 356, 2457-2471.
  33. Ohno, H., Shinoda, K., Spiegelman, B.M., and Kajimura, S. (2012). PPAR agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metabol. 15, 395-404.
  34. Olefsky, J.M., and Glass, C.K. (2010). Macrophages, inflammation, and insulin resistance. Ann. Rev. Physiol. 72, 219-246.
  35. Qiang, L., Wang, L., Kon, N., Zhao, W., Lee, S., Zhang, Y., Rosenbaum, M., Zhao, Y., Gu, W., Farmer, S.R., et al. (2012). Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell 150, 620-632.
  36. Rizos, C.V., Elisaf, M.S., Mikhailidis, D.P., and Liberopoulos, E.N. (2009). How safe is the use of thiazolidinediones in clinical practice? Exp. Opin. Drug Safety 8, 15-32.
  37. Rothwell, N.J., Stock, M.J., and Tedstone, A.E. (1987). Effects of ciglitazone on energy balance, thermogenesis and brown fat activity in the rat. Mol. Cell. Endocrinol. 51, 253-257.
  38. Semple, R.K., Chatterjee, V.K., and O'Rahilly, S. (2006). PPAR gamma and human metabolic disease. J. Clin. Invest. 116, 581-589.
  39. Soccio, R.E., Chen, E.R., and Lazar, M.A. (2014). Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metabol. 20, 573-591.
  40. Sohn, J.H., Lee, Y.K., Han, J.S., Jeon, Y.G., Kim, J.I., Choe, S.S., Kim, S.J., Yoo, H.J., and Kim, J.B. (2018). Perilipin 1 (Plin1) deficiency promotes inflammatory responses in lean adipose tissue through lipid dysregulation. J. Biol. Chem. pii: jbc.RA118.003541.
  41. Sola, D., Rossi, L., Schianca, G.P.C., Maffioli, P., Bigliocca, M., Mella, R., Corliano, F., Fra, G.P., Bartoli, E., and Derosa, G. (2015). Sulfonylureas and their use in clinical practice. Arch. Med. Sci. 11, 840-848.
  42. Taniguchi, C.M., Emanuelli, B., and Kahn, C.R. (2006). Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85-96.
  43. Tontonoz, P., and Spiegelman, B.M. (2008). Fat and beyond: the diverse biology of PPARgamma. Ann. Rev. Biochem. 77, 289-312.
  44. Yau, H., Rivera, K., Lomonaco, R., and Cusi, K. (2013). The future of thiazolidinedione therapy in the management of type 2 diabetes mellitus. Curr. Diabetes Rep. 13, 329-341.
  45. Yki-Jarvinen, H. (2004). Thiazolidinediones. N Engl. J. Med. 351, 1106-1118.