DOI QR코드

DOI QR Code

대규모 홍수 매핑을 위한 저해상도 광학위성영상의 활용 방법

Methodology to Apply Low Spatial Resolution Optical Satellite Images for Large-scale Flood Mapping

  • 박연연 (인하대학교 공간정보공학과) ;
  • 이화선 (인하대학교 공간정보공학과) ;
  • 김경탁 (한국건설기술연구원) ;
  • 이규성 (인하대학교 공간정보공학과)
  • Piao, Yanyan (Department of Geoinformatic Engineering, Inha University) ;
  • Lee, Hwa-Seon (Department of Geoinformatic Engineering, Inha University) ;
  • Kim, Kyung-Tak (Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Kyu-Sung (Department of Geoinformatic Engineering, Inha University)
  • 투고 : 2018.10.04
  • 심사 : 2018.10.15
  • 발행 : 2018.10.31

초록

대규모 홍수 발생 시 적기에 침수지의 공간적 분포와 변화를 모니터링하기 위한 정확하고 효율적인 매핑 수단이 필요하다. 본 연구에서는 높은 시간해상도로 동일 지역을 하루에 여러 번 관측이 가능한 저해상도 광학위성영상을 이용하여 대규모 홍수 범람으로 인한 침수지를 탐지하는 방법을 제시하고자 하였다. 2010년 1월 모로코 세부강 유역에서 발생한 대규모 홍수로 인한 침수지를 탐지하기 위하여 MODIS 일별 표면반사율 영상을 사용하였다. 영상에서 나타나는 침수지의 다양한 분광특성을 분석하여 침수지의 유형이 순수한 물표면과 물과 식물이 혼재된 형태가 함께 분포하고 있었다. 침수지 탐지는 분광특성에 따라 선정된 밴드의 반사율 영상에 직접 임계값을 적용하는 방법과 물 관련 분광지수에 임계값을 적용하는 방법을 비교하였다. 침수지 탐지 결과의 정확도 검증은 TM 영상에서 판독된 부분 지역의 침수지 지도와 비교하였다. NDWI를 제외한 나머지 방법에서 90% 이상의 높은 정확도를 얻었다. 모든 침수지 탐지 방법에서 SWIR밴드와 적색광밴드가 가장 중요하며, 2개의 밴드에 직접 임계값을 적용하는 단순한 방법으로도 정확하고 효율적인 침수지 탐지가 가능했다. 기존의 NIR밴드는 침수지 탐지에 있어서 큰 역할을 하지 못했지만, 식물이 혼재된 침수지의 유형을 구분하는데 유용했다.

과제정보

연구 과제 주관 기관 : 환경부

참고문헌

  1. Ahamed, A. and J.D. Bolten, 2017. A MODIS-based automated flood monitoring system for southeast asia, International Journal of Applied Earth Observation and Geoinformation, 61: 104-117. https://doi.org/10.1016/j.jag.2017.05.006
  2. Atif, I., M.A. Mahboob, and A. Waheed, 2015. Spatio-temporal mapping and multi-sector damage assessment of 2014 flood in Pakistan using remote sensing and GIS, Indian Journal of Science and Technology, 8(35): 1-18.
  3. Coltin, B., S. McMichael, T. Smith, and T. Fong, 2016. Automatic boosted flood mapping from satellite data, International Journal of Remote Sensing, 37(5): 993-1015. https://doi.org/10.1080/01431161.2016.1145366
  4. Fayne, J.V., J.D. Bolten, C.S. Doyle, S. Fuhrmann, M.T. Rice, P.R. Houser, and V. Lakshmi, 2017. Flood mapping in the lower Mekong River Basin using daily MODIS observations, International Journal of Remote Sensing, 38(6): 1737-1757. https://doi.org/10.1080/01431161.2017.1285503
  5. Hoshikawa, K., Y. Fujihara, H. Fujii, and S. Yokoyama, 2016. Detecting Flooding Trends in the Mekong Delta through Flood Ranking Based on a MODIS-derived Time-series Water Index, International Journal of Remote Sensing Applications, 6: 136-145. https://doi.org/10.14355/ijrsa.2016.06.014
  6. Huang, C., Y. Chen, and J. Wu, 2014. Mapping spatio-temporal flood inundation dynamics at large river basin scale using time-series flow data and MODIS imagery, International Journal of Applied Earth Observation and Geoinformation, 26: 350-362. https://doi.org/10.1016/j.jag.2013.09.002
  7. Islam, M.M. and K. Sado, 2000. Flood hazard assessment in Bangladesh using NOAA AVHRR data with geographical information system, Hydrological Processes, 14(3): 605-620. https://doi.org/10.1002/(SICI)1099-1085(20000228)14:3<605::AID-HYP957>3.0.CO;2-L
  8. Islam, A.S., S.K. Bala, and M. Haque, 2010. Flood inundation map of Bangladesh using MODIS time series images, Journal of Flood Risk Management, 3(3): 210-222. https://doi.org/10.1111/j.1753-318X.2010.01074.x
  9. Jain, S.K., A.K. Saraf, A. Goswami, and T. Ahmad, 2006. Flood inundation mapping using NOAA AVHRR data, Water Resources Management, 20(6): 949-959. https://doi.org/10.1007/s11269-006-9016-4
  10. Khan, S.I., Y. Hong, J. Wang, K.K. Yilmaz, J.J. Gourley, R.F. Adler, G.R. Brakenridge, F. Policelli, S. Habib, and D. Irwin, 2011. Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria basin: Implications for hydrologic prediction in ungauged basins, IEEE Transactions on Geoscience and Remote Sensing, 49(1): 85-95. https://doi.org/10.1109/TGRS.2010.2057513
  11. Korea International Cooperation Agency (KOICA), 2015. Reference Paper on the Flood Protection and Control Master Planning Project for the Sebou River Basin in Morocco, KOICA, Seongnam-si, Gyeonggi-do, KOREA.
  12. Kwak, Y., B. Arifuzzanman, and Y. Iwami, 2015. Prompt proxy mapping of flood damaged rice fields using MODIS-derived indices, Remote Sensing, 7(12): 15969-15988. https://doi.org/10.3390/rs71215805
  13. Lee, K.S. and S.I. Lee, 2003. Assessment of post-flooding conditions of rice fields with multi-temporal satellite SAR data, International Journal of Remote Sensing, 24(17): 3457-3465. https://doi.org/10.1080/0143116021000021206
  14. Mohammadi, A., J.F. Costelloe, and D. Ryu, 2017. Application of time series of remotely sensed normalized difference water, vegetation and moisture indices in characterizing flood dynamics of large-scale arid zone floodplains, Remote sensing of Environment, 190: 70-82. https://doi.org/10.1016/j.rse.2016.12.003
  15. Rogers, A. and M. Kearney, 2004. Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices, International Journal of Remote Sensing, 25(12): 2317-2335. https://doi.org/10.1080/01431160310001618103
  16. Sakamoto, T., N. Van Nguyen, A. Kotera, H. Ohno, N. Ishitsuka, and M. Yokozawa, 2007. Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery, Remote Sensing of Environment, 109(3): 295-313. https://doi.org/10.1016/j.rse.2007.01.011
  17. Sheng, Y., P. Gong, and Q. Xiao, 2001. Quantitative dynamic flood monitoring with NOAA AVHRR, International Journal of Remote Sensing, 22(9): 1709-1724. https://doi.org/10.1080/01431160118481
  18. Wang, Q., M. Watanabe, S. Hayashi, and S. Murakami, 2003. Using NOAA AVHRR data to assess flood damage in China, Environmental monitoring and assessment, 82(2): 119-148. https://doi.org/10.1023/A:1021898531229
  19. Wiesnet, D. and M. Deutsch, 1987. Flood monitoring in South America from the Landsat NOAA and nimbus satellites, Advances in Space Research, 7(3): 77-84. https://doi.org/10.1016/0273-1177(87)90127-X