DOI QR코드

DOI QR Code

고해상도 광학영상과 SAR 영상 간 정합 기법

Registration Method between High Resolution Optical and SAR Images

  • 전형주 (서울대학교 건설환경공학부) ;
  • 김용일 (서울대학교 건설환경공학부)
  • Jeon, Hyeongju (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Yongil (Department of Civil and Environmental Engineering, Seoul National University)
  • 투고 : 2018.06.28
  • 심사 : 2018.08.14
  • 발행 : 2018.10.31

초록

다중센서 위성영상 간 통합 분석 및 융합과 관련된 연구가 활발히 진행되고 있다. 이를 위해서는 다중센서 영상 간 정합이 선행되어야 한다. 대표적인 정합 기법으로는 SIFT (Scale Invariant Feature Transform)와 같은 알고리즘이 존재한다. 그러나, 광학영상과 SAR (Synthetic Aperture Radar)영상은 취득 시 센서 자세와 방사 특성의 상이함으로 영상 간 분광적인 특성이 비선형성을 이뤄 기존 기법을 적용하기에 어렵다. 이를 해결하기 위해, 본 연구에서는 특징기반 정합기법인 SAR-SIFT (Scale Invariant Feature Transform)와 형상 서술자 벡터 DLSS (Dense Local Self-Similarity)를 결합하여 개선된 영상 정합기법을 제안하였다. 본 실험 지역은 대전 일대에서 촬영된 KOMPSAT-2 영상과 Cosmo-SkyMed 영상을 이용하여 실험하였다. 제안 기법을 비교평가하기 위해 특징점 및 정합쌍 추출에 대해 대표적인 기존 기법인 SIFT와 SAR-SIFT를 이용하였다. 실험 결과를 통해 제안 기법은 기존 기법들과 다르게 두 실험 지역에서 참정합쌍을 추출하였다. 또한 추출된 정합쌍을 통한 정합 결과 정성적으로 우수하게 정합되었으며, 정량적으로도 두 실험 지역에서 각각 RMSE (Root Mean Square Error) 1.66 m, 2.65 m로 우수한 정합 결과를 보였다.

과제정보

연구 과제 주관 기관 : 국방과학연구소

참고문헌

  1. Brown, L. G., 1992. A survey of image registration techniques, ACM Computing Surveys, 24(4): 325-376. https://doi.org/10.1145/146370.146374
  2. Byun, Y., J. Choi, and Y. Han, 2013. An area-based image fusion scheme for the integration of SAR and optical satellite imagery, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(5): 2212-2220. https://doi.org/10.1109/JSTARS.2013.2272773
  3. Dellinger, F., J. Delon, Y. Gousseau, J. Michel, and F. Tupin, 2012. SAR-SIFT: A SIFT-like algorithm for applications on SAR images, Proc. of 2012 International Geoscience and Remote Sensing Symposium, Munich, Germany, Jul. 22-27, pp. 3478-3481.
  4. Dellinger, F., J. Delon, Y. Gousseau, J. Michel, and F. Tupin, 2015. SAR-SIFT: a SIFT-like algorithm for SAR images, IEEE Transactions on Geoscience and Remote Sensing, 53(1): 453-466. https://doi.org/10.1109/TGRS.2014.2323552
  5. Deutsches Zentrum fur Luft- und Raumfahrt e.V(DLR), 2008. TerraSAR-X ground segment basic product specification document, Cluster Applied Remote Sensing (CAF) Oberpfaffenhofen, Germany.
  6. Fjortoft, R., A. Lopes, P. Marthon, and E. Cubero-Castan, 1998. An optimal multiedge detector for SAR image segmentation, IEEE Transactions on Geoscience and Remote Sensing, 36(3): 793-802. https://doi.org/10.1109/36.673672
  7. Han, Y. K., 2013. Automatic image-to-image registration between high-resolution multisensor satellite data in urban areas, Doctor's Thesis, Seoul National University, Seoul, Korea.
  8. Han, Y. K. and J. W. Choi, 2015. Matching points extraction between optical and TIR images by using SURF and local phase correlation, Journal of the Korean Society for Geo-spatial Information Science, 23(1): 81-88. https://doi.org/10.7319/kogsis.2015.23.1.081
  9. Jung, M. Y., H. J. Jeon, and Y. I. Kim, 2016. Feature extraction from SAR and optic image using SAR-SIFT for image registration, Proc. of the 2016 KSRS Fall Conference, Chungju, Korea, Nov. 3-4, vol. 19, pp. 41-44.
  10. Kim, T. and Y. J. Im, 2003. Automatic satellite image registration by combination of matching and random sample consensus, IEEE Transactions on Geoscience and Remote Sensing, 41(5): 1111-1117. https://doi.org/10.1109/TGRS.2003.811994
  11. Kupfer, B., N. S. Netanyahu, and I. Shimshoni, 2015. An efficient SIFT-based mode-seeking algorithm for sub-pixel registration of remotely sensed images, IEEE Geoscience and Remote Sensing Letters, 12(2): 379-383. https://doi.org/10.1109/LGRS.2014.2343471
  12. Liu, J. Z. and X. C. Yu, 2008. Research on SAR image matching technology based on SIFT, Proc. of 2008 the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, Jul. 3-11, vol. 37, pp. 403-408.
  13. Lowe, D. G., 1999. Object recognition from local scale-invariant features, Proc. of 1999 the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, Sep. 20-27, vol. 2, pp. 1150-1157.
  14. Ma, W., Z. Wen, Y. Wu, L. Jiao, M. Gong, Y. Zheng, and L. Liu, 2017. Remote sensing image registration with modified sift and enhanced feature matching, IEEE Geoscience and Remote Sensing Letters, 14(1): 3-7. https://doi.org/10.1109/LGRS.2016.2600858
  15. Mikolajczyk, K. and C. Schmid, 2005. A performance evaluation of local descriptors, IEEE transactions on pattern analysis and machine intelligence, 27(10): 1615-1630. https://doi.org/10.1109/TPAMI.2005.188
  16. Merkle, N., R. Müller, P. Schwind, G. Palubinskas, and P. Reinartz, 2015. A new approach for optical and SAR satellite image registration, Proc. of 2015 ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Munich, Germany, Mar. 25-27, vol. 2, pp. 119.
  17. Pellizzeri, T. M., P. Gamba, P. Lombardo, and F. Dell'Acqua, 2003. Multitemporal/multiband SAR classification of urban areas using spatial analysis: Statistical versus neural kernel-based approach, IEEE Transactions on Geoscience and Remote Sensing, 41(10): 2338-2353. https://doi.org/10.1109/TGRS.2003.818762
  18. Suri, S. and P. Reinartz, 2010. Mutual-information-based registration of TerraSAR-X and Ikonos imagery in urban areas, IEEE Transactions on Geoscience and Remote Sensing, 48(2): 939-949. https://doi.org/10.1109/TGRS.2009.2034842
  19. Ye, Y. and J. Shan, 2014. A local descriptor based registration method for multispectral remote sensing images with non-linear intensity differences, ISPRS Journal of Photogrammetry and Remote Sensing, 90: 83-95. https://doi.org/10.1016/j.isprsjprs.2014.01.009
  20. Ye, Y. and L. Shen, 2016. HOPC: A novel similarity metric based on geometric structural properties for multi-modal remote sensing image matching, Proc. of 2016 ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech, Jul. 12-19, vol. 3-1, pp. 9-16.
  21. Ye, Y., J. Shan, L. Bruzzone, and L. Shen, 2017a. Robust registration of multimodal remote sensing images based on structural similarity, IEEE Transactions on Geoscience and Remote Sensing, 55(5): 2941-2958. https://doi.org/10.1109/TGRS.2017.2656380
  22. Ye, Y., L. Shen, J. Wang, Z. Li, and Z. Xu, 2015. Automatic matching of optical and SAR imagery through shape property, Proc. of 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, Jul. 26-31, pp. 1072-1075.
  23. Ye, Y., L. Shen, M. Hao, J. Wang, and Z. Xu, 2017b. Robust optical-to-SAR image matching based on shape properties, IEEE Geoscience and Remote Sensing Letters, 14(4): 564-568. https://doi.org/10.1109/LGRS.2017.2660067
  24. Zitova, B. and J. Flusser, 2003. Image registration methods: a survey, Image and Vision Computing, 21(11): 977-1000. https://doi.org/10.1016/S0262-8856(03)00137-9