DOI QR코드

DOI QR Code

Registration Method between High Resolution Optical and SAR Images

고해상도 광학영상과 SAR 영상 간 정합 기법

  • Jeon, Hyeongju (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Yongil (Department of Civil and Environmental Engineering, Seoul National University)
  • 전형주 (서울대학교 건설환경공학부) ;
  • 김용일 (서울대학교 건설환경공학부)
  • Received : 2018.06.28
  • Accepted : 2018.08.14
  • Published : 2018.10.31

Abstract

Integration analysis of multi-sensor satellite images is becoming increasingly important. The first step in integration analysis is image registration between multi-sensor. SIFT (Scale Invariant Feature Transform) is a representative image registration method. However, optical image and SAR (Synthetic Aperture Radar) images are different from sensor attitude and radiation characteristics during acquisition, making it difficult to apply the conventional method, such as SIFT, because the radiometric characteristics between images are nonlinear. To overcome this limitation, we proposed a modified method that combines the SAR-SIFT method and shape descriptor vector DLSS(Dense Local Self-Similarity). We conducted an experiment using two pairs of Cosmo-SkyMed and KOMPSAT-2 images collected over Daejeon, Korea, an area with a high density of buildings. The proposed method extracted the correct matching points when compared to conventional methods, such as SIFT and SAR-SIFT. The method also gave quantitatively reasonable results for RMSE of 1.66m and 2.45m over the two pairs of images.

Acknowledgement

Supported by : 국방과학연구소

References

  1. Brown, L. G., 1992. A survey of image registration techniques, ACM Computing Surveys, 24(4): 325-376. https://doi.org/10.1145/146370.146374
  2. Byun, Y., J. Choi, and Y. Han, 2013. An area-based image fusion scheme for the integration of SAR and optical satellite imagery, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(5): 2212-2220. https://doi.org/10.1109/JSTARS.2013.2272773
  3. Dellinger, F., J. Delon, Y. Gousseau, J. Michel, and F. Tupin, 2012. SAR-SIFT: A SIFT-like algorithm for applications on SAR images, Proc. of 2012 International Geoscience and Remote Sensing Symposium, Munich, Germany, Jul. 22-27, pp. 3478-3481.
  4. Dellinger, F., J. Delon, Y. Gousseau, J. Michel, and F. Tupin, 2015. SAR-SIFT: a SIFT-like algorithm for SAR images, IEEE Transactions on Geoscience and Remote Sensing, 53(1): 453-466. https://doi.org/10.1109/TGRS.2014.2323552
  5. Deutsches Zentrum fur Luft- und Raumfahrt e.V(DLR), 2008. TerraSAR-X ground segment basic product specification document, Cluster Applied Remote Sensing (CAF) Oberpfaffenhofen, Germany.
  6. Fjortoft, R., A. Lopes, P. Marthon, and E. Cubero-Castan, 1998. An optimal multiedge detector for SAR image segmentation, IEEE Transactions on Geoscience and Remote Sensing, 36(3): 793-802. https://doi.org/10.1109/36.673672
  7. Han, Y. K., 2013. Automatic image-to-image registration between high-resolution multisensor satellite data in urban areas, Doctor's Thesis, Seoul National University, Seoul, Korea.
  8. Han, Y. K. and J. W. Choi, 2015. Matching points extraction between optical and TIR images by using SURF and local phase correlation, Journal of the Korean Society for Geo-spatial Information Science, 23(1): 81-88. https://doi.org/10.7319/kogsis.2015.23.1.081
  9. Jung, M. Y., H. J. Jeon, and Y. I. Kim, 2016. Feature extraction from SAR and optic image using SAR-SIFT for image registration, Proc. of the 2016 KSRS Fall Conference, Chungju, Korea, Nov. 3-4, vol. 19, pp. 41-44.
  10. Kim, T. and Y. J. Im, 2003. Automatic satellite image registration by combination of matching and random sample consensus, IEEE Transactions on Geoscience and Remote Sensing, 41(5): 1111-1117. https://doi.org/10.1109/TGRS.2003.811994
  11. Kupfer, B., N. S. Netanyahu, and I. Shimshoni, 2015. An efficient SIFT-based mode-seeking algorithm for sub-pixel registration of remotely sensed images, IEEE Geoscience and Remote Sensing Letters, 12(2): 379-383. https://doi.org/10.1109/LGRS.2014.2343471
  12. Liu, J. Z. and X. C. Yu, 2008. Research on SAR image matching technology based on SIFT, Proc. of 2008 the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, Jul. 3-11, vol. 37, pp. 403-408.
  13. Lowe, D. G., 1999. Object recognition from local scale-invariant features, Proc. of 1999 the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, Sep. 20-27, vol. 2, pp. 1150-1157.
  14. Ma, W., Z. Wen, Y. Wu, L. Jiao, M. Gong, Y. Zheng, and L. Liu, 2017. Remote sensing image registration with modified sift and enhanced feature matching, IEEE Geoscience and Remote Sensing Letters, 14(1): 3-7. https://doi.org/10.1109/LGRS.2016.2600858
  15. Mikolajczyk, K. and C. Schmid, 2005. A performance evaluation of local descriptors, IEEE transactions on pattern analysis and machine intelligence, 27(10): 1615-1630. https://doi.org/10.1109/TPAMI.2005.188
  16. Merkle, N., R. Müller, P. Schwind, G. Palubinskas, and P. Reinartz, 2015. A new approach for optical and SAR satellite image registration, Proc. of 2015 ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Munich, Germany, Mar. 25-27, vol. 2, pp. 119.
  17. Pellizzeri, T. M., P. Gamba, P. Lombardo, and F. Dell'Acqua, 2003. Multitemporal/multiband SAR classification of urban areas using spatial analysis: Statistical versus neural kernel-based approach, IEEE Transactions on Geoscience and Remote Sensing, 41(10): 2338-2353. https://doi.org/10.1109/TGRS.2003.818762
  18. Suri, S. and P. Reinartz, 2010. Mutual-information-based registration of TerraSAR-X and Ikonos imagery in urban areas, IEEE Transactions on Geoscience and Remote Sensing, 48(2): 939-949. https://doi.org/10.1109/TGRS.2009.2034842
  19. Ye, Y. and J. Shan, 2014. A local descriptor based registration method for multispectral remote sensing images with non-linear intensity differences, ISPRS Journal of Photogrammetry and Remote Sensing, 90: 83-95. https://doi.org/10.1016/j.isprsjprs.2014.01.009
  20. Ye, Y. and L. Shen, 2016. HOPC: A novel similarity metric based on geometric structural properties for multi-modal remote sensing image matching, Proc. of 2016 ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech, Jul. 12-19, vol. 3-1, pp. 9-16.
  21. Ye, Y., J. Shan, L. Bruzzone, and L. Shen, 2017a. Robust registration of multimodal remote sensing images based on structural similarity, IEEE Transactions on Geoscience and Remote Sensing, 55(5): 2941-2958. https://doi.org/10.1109/TGRS.2017.2656380
  22. Ye, Y., L. Shen, J. Wang, Z. Li, and Z. Xu, 2015. Automatic matching of optical and SAR imagery through shape property, Proc. of 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, Jul. 26-31, pp. 1072-1075.
  23. Ye, Y., L. Shen, M. Hao, J. Wang, and Z. Xu, 2017b. Robust optical-to-SAR image matching based on shape properties, IEEE Geoscience and Remote Sensing Letters, 14(4): 564-568. https://doi.org/10.1109/LGRS.2017.2660067
  24. Zitova, B. and J. Flusser, 2003. Image registration methods: a survey, Image and Vision Computing, 21(11): 977-1000. https://doi.org/10.1016/S0262-8856(03)00137-9