DOI QR코드

DOI QR Code

Mass Spectrometry in the Determination of Glycosylation Site and N-Glycan Structures of Human Placental Alkaline Phosphatase

  • Solakyildirim, Kemal (Department of Chemistry, Faculty of Arts and Science, Erzincan University) ;
  • Li, Lingyun (Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute) ;
  • Linhardt, Robert J. (Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute)
  • Received : 2018.04.04
  • Accepted : 2018.05.30
  • Published : 2018.09.30

Abstract

Alkaline phosphatase (AP) is a membrane-bound glycoprotein that is widely distributed in the plasma membrane of cells of various organs and also found in many organisms from bacteria to humans. The complete amino acid sequence and three-dimensional structure of human placental alkaline phosphatase have been reported. Based on the literature data, AP consists of two presumptive glycosylation sites, at Asn-144 and Asn-271. However, it only contains a single occupied N-linked glycosylation site and no occupied O-linked glycosylation sites. Hydrophilic interaction chromatography (HILIC) has been primarily employed for the characterization of the glycan structures derived from glycoproteins. N-glycan structures from human placental alkaline phosphatase (PLAP) were investigated using HILIC-Orbitrap MS, and subsequent data processing and glycan assignment software. 16 structures including 10 sialylated N-glycans were identified from PLAP.

Acknowledgement

Supported by : US National Institute of Health

References

  1. Endo, T.; Ohbayashi, H.; Hayashi, Y.; Ikehara, Y.; Kochibe, N.; Kobata, A. J. Biochem. 2010, 103, 182.
  2. Millan, J. L. Purinergic Signal. 2006, 2, 335. https://doi.org/10.1007/s11302-005-5435-6
  3. Le Du, M. H.; Stigbrand, T.; Taussig, M. J.; Menez, A.; Stura, E. A. J. Biol. Chem. 2001, 276, 9158. https://doi.org/10.1074/jbc.M009250200
  4. Zhang, F.; Murhammer, D. W.; Linhardt, R. J. Appl. Biochem. Biotechnol. 2002, 101, 197. https://doi.org/10.1385/ABAB:101:3:197
  5. Nam, J. H.; Zhang, F.; Ermonval, M.; Linhardt, R. J.; Sharfstein, S. T. Biotechnol. Bioeng. 2008, 100, 1178. https://doi.org/10.1002/bit.21853
  6. Chen, Y. H.; Chang, T. C.; Chang, G. G. Protein Expr. Purif. 2004, 36, 90. https://doi.org/10.1016/j.pep.2004.03.006
  7. Suzuki, A.; Lymp, J.; Donlinger, J.; Mendes, F.; Angulo, P.; Lindor, K. Clin. Gastroenterol. Hepatol. 2007, 5, 259. https://doi.org/10.1016/j.cgh.2006.09.031
  8. Regidor, D. L.; Kovesdy, C. P.; Mehrotra, R.; Rambod, M.; Jing, J.; McAllister, C. J.; Wyck, D. V.; Kopple, J. D.; Kalantar-Zadeh, K. J. Am. Soc. Nephrol.?2008, 19, 2193. https://doi.org/10.1681/ASN.2008010014
  9. Dziedziejko, V.; Safranow, K.; Slowik-Zylka, D.; Machoy-Mokrzynska, A.; Millo, B.; Machoy, Z.; Chlubek, D. Biochime 2009, 91, 445. https://doi.org/10.1016/j.biochi.2008.11.006
  10. Oliveira-Ferrer, L.; Legler, K.; Milde-Langosch, K. Semin. Cancer Biol. 2017, 44, 141. https://doi.org/10.1016/j.semcancer.2017.03.002
  11. Haltiwanger, R. S.; Feizi, T. Curr. Opin. Struct. Biol. 2011, 21, 573. https://doi.org/10.1016/j.sbi.2011.08.010
  12. Szabo, Z.; Guttman, A.; Karger, B. L. Anal. Chem. 2010, 82, 2588. https://doi.org/10.1021/ac100098e
  13. North, S. J.; Hitchen, P. G.; Haslam, S. M.; Dell, A. Curr. Opin. Struct. Biol. 2009, 19, 498. https://doi.org/10.1016/j.sbi.2009.05.005
  14. Kim, Y. -G.; Gil, G.; Jang, K.; Lee, S.; Kim, H.; Kim, J.; Chung, J.; Park, C.; Harvey, D. J.; Kim, B. J. Mass Spectrom. 2009, 44, 1087. https://doi.org/10.1002/jms.1587
  15. Gil, G. -C.; Iliff, B.; Cerny, R.; Velander, W. H.; Van Cott, K. E. Anal. Chem. 2010, 82, 6613. https://doi.org/10.1021/ac1011377
  16. Mechref, Y.; Muzikar, J.; Novotny, M. V. Electrophoresis 2005, 26, 2034. https://doi.org/10.1002/elps.200410345
  17. Nwosu, C. C.; Aldredge, D. L.; Lee, H.; Lerno, L. A.; Zivkovic, A. M.; German, J. B.; Lebrilla, C. B. J. Proteome Res. 2012, 11, 2912. https://doi.org/10.1021/pr300008u
  18. Melmer, M.; Stangler, T.; Schiefermeier, M.; Brunner, W.; Toll, H.; Rupprecther, A.; Linder, W.; Premstaller, A. Anal. Bioanal. Chem. 2010, 398, 905. https://doi.org/10.1007/s00216-010-3988-x
  19. Ruhaak, L. R.; Huhn, C.; Waterreus. W.; De Boer, A. R.; Neususs, C.; Hokke, C. H.; Deelder, A. M.; Wuhrer, M. Anal. Chem. 2008, 80, 6119. https://doi.org/10.1021/ac800630x
  20. Buszewski, B.; Noga, S. Anal. Bioanal. Chem. 2012, 402, 231. https://doi.org/10.1007/s00216-011-5308-5
  21. Shevchenko, A.; Tomas, H.; Havlis, J.; Olsen, J. V.; Mann, M. Nat. Protoc. 2006, 1, 2856.
  22. Morelle, W.; Michalski, J. -C. Nat. Protoc. 2007, 2, 1585. https://doi.org/10.1038/nprot.2007.227
  23. Tarentino, A. L.; Gomez, C. M.; Plummer, T. H. Biochemistry 1985, 24, 4665. https://doi.org/10.1021/bi00338a028
  24. Harris, H. Clin. Chim. Acta 1990, 186, 133. https://doi.org/10.1016/0009-8981(90)90031-M
  25. Desaire, H. Mol. Cell. Proteomics 2013, 12, 893. https://doi.org/10.1074/mcp.R112.026567