DOI QR코드

DOI QR Code

Diversity and Antifungal Activity of Endophytic Fungi Associated with Camellia oleifera

  • Yu, Jinxiu (Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University) ;
  • Wu, Ying (Hunan Academy of Forestry) ;
  • He, Zhen (Hunan Academy of Forestry) ;
  • Li, Mi (Hunan Academy of Forestry) ;
  • Zhu, Kaiming (Hunan Academy of Forestry) ;
  • Gao, Bida (Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University)
  • Received : 2017.10.30
  • Accepted : 2018.01.02
  • Published : 2018.06.01

Abstract

Endophytic fungi strains (n = 81) were isolated from the leaves, barks, and fruits of Camellia oleifera from Hunan province (China) to delineate their species composition and potential as biological control agents of C. oleifera anthracnose. The fungi were identified by morphological and phylogenetic analyses. Fungal colonization rates of the leaves, barks, and fruits were 58.02, 27.16, and 14.81%, respectively. The isolates were identified as 14 genera, belonging to two subdivisions, Deuteromycotina and Ascomycotina; 87.65% of all isolates belonged to Deuteromycotina. The dominant species, occurring with a high relative frequency, were Pestalotiopsis sp. (14.81%), Penicillium sp. (14.81%), and Fusarium sp. (12.35%). The Simpson's and Shannon's diversity indices revealed the highest species diversity in the leaves, followed by the barks and fruits. The similarity index for the leaves versus barks comparison was the highest, indicating that the number of endophytic fungal species shared by the leaves and barks was higher than barks and fruits or leaves and fruits. Based on the results of dual culture experiments, only five strains exhibited antifungal activity against C. oleifera anthracnose pathogen, with isolate ty-64 (Oidium sp.) generating the broadest inhibition zones. Our results indicate that the endophytes associated with C. oleifera could be employed as natural agents controlling C. oleifera anthracnose.

Acknowledgement

Supported by : Youth Innovation Research Foundation

References

  1. Vogl AE. Mehl und die anderen Mehlprodukte der Cerealien und Leguminosen. Nahrungsm Unters Hyg Warenk. 1898;12:25-29.
  2. Hyde KD, Soytong K. The fungal endophyte dilemma. Fungal Divers. 2008;33:163-173.
  3. Petrini O. Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS, editors. Microbial ecology of leaves. New York: Springer; 1991. p. 179-197.
  4. Azevedo JL, Walter M Jr, Pereira JO, et al. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol. 2000;3:40-65.
  5. Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol R. 2003;67:491-502. https://doi.org/10.1128/MMBR.67.4.491-502.2003
  6. Chen Y. Fine germplasm resources of Camellia oleifera. Beijing: China Forestry Publishing House; 2008.
  7. Chen Y, Wang D, Wang B. Analysis on comprehensive utilization of Camellia oleifera. J Hunan Forestry Sci Technol. 1997;24:15-19.
  8. Lan Q, Jiang G, Wu W. Research progress of endophytic fungi in agricultural plants. World Pest. 2002;24:10-11.
  9. Paul NC, Deng J, Sang H, et al. Distribution and antifungal activity of endophytic fungi in different growth stages of chili pepper (Capsicum annuum L.) in Korea. Plant Pathol J. 2012;28:10-19. https://doi.org/10.5423/PPJ.OA.07.2011.0126
  10. Wang Y, Lai Z, Li X, et al. Isolation, diversity and acetylcholinesterase inhibitory activity of the culturable endophytic fungi harboured in Huperzia serrata from Jinggang Mountain, China. World J Microbiol Biotechnol. 2016;32:20-23. https://doi.org/10.1007/s11274-015-1966-3
  11. Luo Z, Lin H, Ding W, et al. Phylogenetic diversity and antifungal activity of endophytic fungi associated with Tephrosia purpurea. Mycobiology. 2015;43:435-443. https://doi.org/10.5941/MYCO.2015.43.4.435
  12. de Siqueira VM, Conti R, de Araujo JM, et al. Endophytic fungi from the medicinal plant Lippia sidoides Cham. and their antimicrobial activity. Symbiosis. 2011;53:89-95. https://doi.org/10.1007/s13199-011-0113-7
  13. Rivera-Ordu-na FN, Suarez-Sanchez RA, Flores-Bustamante ZR, et al. Diversity of endophytic fungi of Taxus globosa (Mexican yew). Fungal Divers. 2010;47:65-74.
  14. Wei J. Fungus identification handbook. Shanghai: Shanghai Scientific & Technical Publishers; 1979.
  15. White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315-322.
  16. Camargo JA. Can dominance influence stability in competitive interactions? Oikos. 1992;64:605-609. https://doi.org/10.2307/3545183
  17. Shannon CE, Weaver W. The mathematical theory of communication. Urbana: University of Illinois Press; 1949.
  18. Simpson EH. Measurement of species diversity. Nature (Lond). 1949;163:688. https://doi.org/10.1038/163688a0
  19. Pielou EC. An introduction to mathematical ecology. Bioscience. 1969;24:7-12.
  20. Jaccard P. Distribution de la Flore Alpine dans le Bassin des Dranses et dans quelques regions voisines. Bull Soc Vaudoise Sci Nat. 1901;37:241-272.
  21. Zeng D, He Z, Fu Y, et al. Studies on biological control of oil tea anthracnose. Sci Silvae Sin. 1987;23:144-150.
  22. Zhou G, Lu L, Liu J, et al. Screening of beneficial endophytic bacteria to control Colletotrichum gloeosporioides and effects of control diseases. J Hunan Agricult Univ (Nat Sci). 2008;34:698-700.
  23. Lu L. Screening, fermentation conditions and inhibiting mechanisms of antagonistic strains against Camellia oleifera anthracnose caused by Colletotrichum gloeosporioides [dissertation]. Changsha: Central South University of Forestry and Tenchnology; 2009.
  24. You J, Zhou G, Liu J, et al. Microbial inoculum of Camellia oleifera endophytic antagonistic bacteria Y13. J Cent South Univ Forest Technol. 2010;30: 131-134.
  25. Wang R. Colonization and adjusted effect of inoculating with antagonistic strain Y13 on microbe in Camellia oleifera [dissertation]. Changsha: Central South University of Forestry and Technology; 2014.
  26. Jiang W, Liu X, Qiu R, et al. Screening and identification of oil-tea endophytic antagonistic bacteria. J Anhui Agricult Sci. 2016;44:125-127.
  27. Zhou X, Zhang T, Zhang M, et al. Isolation of endophytic fungi from Camellia oleifera. J Anhui Agricult Sci. 2012;40:8958-8959.
  28. Zhang L, Zhang Y, Wang S, et al. The composition and diversity of endophytic fungi in different parts of Camellia oleifera Abel. China Forest Sci Technol. 2013;27:101-105.
  29. Zhou S, Yan S, Wu Z, et al. Detection of endophytic fungi within foliar tissues of Camellia oleifera based on rDNA ITS sequences. Mycosystema. 2013;32:819-830.
  30. Gan J, Chen Y, Liu Y, et al. Distribution of endophytic fungi in Ginkgo biloba. J Fungal Res. 2007;5:137-141.
  31. Zheng Y, Qiao X, Miao C, et al. Diversity, distribution and biotechnological potential of endophytic fungi. Ann Microbiol. 2015;66:529-542.
  32. Li X, Li W, Chu L, et al. Diversity and heavy metal tolerance of endophytic fungi from Dysphania ambrosioides, a hyperaccumulator from Pb-Zn contaminated soils. J Plant Interact. 2016;11: 186-192. https://doi.org/10.1080/17429145.2016.1266043
  33. Xiong Z, Yang Y, Zhao N, et al. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiol. 2013;13:71. https://doi.org/10.1186/1471-2180-13-71
  34. Carroll G, Petrini O. Patterns of substrate utilization by some fungal endophytes from coniferous foliage. Mycologia. 1983;75:53-63. https://doi.org/10.1080/00275514.1983.12021637
  35. Kharwar RN, Verma SK, Mishra A, et al. Assessment of diversity, distribution and antibacterial activity of endophytic fungi isolated from a medicinal plant Adenocalymma alliaceum Miers. Symbiosis. 2011;55:39-46. https://doi.org/10.1007/s13199-011-0142-2
  36. Petrini O, Carroll G. Endophytic fungi in foliage of some Cupressaceae in Oregon. Can J Bot. 1981;59:629-636. https://doi.org/10.1139/b81-089
  37. Arnold AE, Maynard Z, Gilbert GS. Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol Res. 2001;105:1502-1507. https://doi.org/10.1017/S0953756201004956
  38. Inacio ML, Silva GH, Teles HL, et al. Antifungal metabolites from Colletotrichum gloeosporioides, an endophytic fungus in Cryptocarya mandioccana Nees (Lauraceae). Biochem Syst Ecol. 2006;34:822-824. https://doi.org/10.1016/j.bse.2006.06.007
  39. Ding G, Liu S, Guo L, et al. Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. J Nat Prod. 2008;71:615. https://doi.org/10.1021/np070590f
  40. Li E, Jiang L, Guo L, et al. Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorgan Med Chem. 2008;16:7894-7899. https://doi.org/10.1016/j.bmc.2008.07.075
  41. Tejesvi MV, Kini KR, Prakash HS, Subbiah V, Shetty HS. Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants. Fungal Divers. 2007;24:37.
  42. Chen XM, Dong HL, Hu KX, et al. Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrobium loddigesii Rolfe. J Plant Growth Regul. 2010;29:328-337. https://doi.org/10.1007/s00344-010-9139-y
  43. Rosa LH, Almeida Vieira ML, Santiago IF, et al. Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol. 2010;73:178-189.
  44. Park JH, Park JH, Choi GJ, et al. Screening for antifungal endophytic fungi against six plant pathogenic fungi. Mycobiology. 2003;31:179-182. https://doi.org/10.4489/MYCO.2003.31.3.179
  45. Vu T, Hauschild R, Sikora RA. Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology. 2006;8:847-852. https://doi.org/10.1163/156854106779799259
  46. Qi F, Jing T, Zhan Y. Characterization of endophytic fungi from Acer ginnala Maxim. in an artificial plantation: media effect and tissue-dependent variation. Plos One. 2012;7:e46785. https://doi.org/10.1371/journal.pone.0046785
  47. Gazis R, Chaverri P. Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol. 2010;3:240-254. https://doi.org/10.1016/j.funeco.2009.12.001
  48. Bezerra JD, Santos MG, Svedese VM, et al. Richness of endophytic fungi isolated from Opuntia ficus-indica Mill. (Cactaceae) and preliminary screening for enzyme production. World J Microbiol Biotechnol. 2012;28:1989-1995. https://doi.org/10.1007/s11274-011-1001-2
  49. Carvalho CR, Goncalves VN, Pereira CB, et al. The diversity, antimicrobial and anticancer activity of endophytic fungi associated with the medicinal plant Stryphnodendron adstringens (Mart.) Coville (Fabaceae) from the Brazilian savannah. Symbiosis. 2012;57:95-107. https://doi.org/10.1007/s13199-012-0182-2
  50. Hanada RE, Pomella AW, Costa HS, et al. Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuacu) trees and their potential for growth promotion and biocontrol of black-pod disease. Fungal Biol. 2010;114: 901-910. https://doi.org/10.1016/j.funbio.2010.08.006
  51. Tejesvi MV, Kajula M, Mattila S, et al. Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fungal Divers. 2011;47:97-107. https://doi.org/10.1007/s13225-010-0087-4
  52. Liu X, Dong M, Chen X, et al. Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol. 2008;78:241-247. https://doi.org/10.1007/s00253-007-1305-1
  53. Shibuya H, Kitamura C, Maehara S, et al. Transformation of cinchona alkaloids into 1-Noxide derivatives by endophytic xylaria sp. isolated from Cinchona pubescens. Chem Pharm Bull. 2003;51:71-74. https://doi.org/10.1248/cpb.51.71
  54. Liu X, Dong M, Chen X, et al. Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem. 2007;105:548-554. https://doi.org/10.1016/j.foodchem.2007.04.008