Extended Maxwell-Wagner Polarization Model with Onsager Theory for the Electrorheological Phenomena

전기유변현상 해석을 위하여 Onsager 이론으로 확장한 Maxwell-Wagner 분극 모델

  • Kim, Young Dae (School of Chemical Engineering, Chonnam National University)
  • 김영대 (전남대학교 화학공학부)
  • Received : 2018.07.24
  • Accepted : 2018.09.07
  • Published : 2018.10.01


Among various mechanisms for ER phenomena, the electrostatic polarization and conduction models were known as the most promising theoretical models. However, many inherited defects have limited their uses for the development of effective ER fluids. To resolve these problems, extended Maxwell-Wagner polarization model with Onsager theory was developed. It was observed that the extended model resolved the problems, suggesting that the extended model can be used for the development of effect ER fluids.


Electrorheology;Electrorheological fluids;Maxwell-Wagner polarization;Onsager theory;Suspension


  1. Winslow, W. M., "Induced Fibration of Suspensions," J. Appl. Phys., 20, 1137-1140(1949).
  2. Deinega, Y. F. and Vinogradov, G. V., "Electric fields in Rheology of Disperse System," Rheol Acta., 23, 636-651(1984).
  3. Shulman, Z. P., Gorodkin, R. G. and Korobko, E. V., "The Electrorheological Effects and Its Possible Uses," J. Non-Newt. Fluid Mech., 8, 29-41(1981).
  4. Hao, T., "Electrorheological Suspensions," Adv. Colloid Interface Sci., 97, 1-35(2002).
  5. Liu, Y. D. and Choi, H. J., "Electrorheological Fluids: Smart Soft Matter and Characteristics," Soft Matter, 8, 11961-11978 (2012).
  6. Block, H. and Kelly, J. P., "Electro-heology," J. Phys. D: Appl. Phys., 21, 1661-1677(1988).
  7. Kim, D. H. and Kim, Y. D., "Electrorheological Properties of Polypyrrole and its Composite ER Fluids," J. Ind. Eng. Chem., 13(6), 879-894(2007).
  8. Filisko, F. E. and Razdilowski, L. H., "An intrinsic Mechanism for the Activity of Aumino-silicate Based Electrorheological Materials," J. Rheo., 34, 539-552(1990).
  9. Otsubo, Y., Sakine, M. and Katayama, S., "Effect of Adsorbed Water on the Electrorheology of Silica Suspensions," J. Coll. Interface Sci., 150, 324-330(1992).
  10. Kim, Y. D. and Klingenberg, D. J., "Two roles of Nonionic Surfactants on the Electrorheological Response," J. Coll. Interface Sci., 168, 568-578(1996).
  11. Shin, K., Kim, D., Cho, J-C., Lim, H-S., Kim, J. W. and Suh, K- D., "Monodisperse Conducting Colloidal Dipoles with Symmetric Dimer Structure for Enhancing Electrorheology Properties," J. Coll. Interface Sci., 374, 18-24(2012).
  12. Noh, J., Yoon, C. M. and Jang, J., "Enhanced Electrorheological Activity of Polyaniline Coated Mesoporous Silica with High Aspect Ratio," J. Coll. Interface Sci., 470, 237-244(2016).
  13. Lengalova, A., Pavlinek, B., Saha, P., Stejskal, J. and Quadrat, O., "Electrorheology of Polyaniline-coated Inorganic Particles in Silicone oil," J. Coll. Interface Sci., 258, 174-178(2003).
  14. Stangroom, J. E., "Basic Considerations in Flowing Electrorheologcal Fluids," J. Stat. Phys., 64, 1059-1072(1991).
  15. Kim, Y. D., "A Surfactant Bridge Model for the Nonlinear Electrorheological Effects of Surfactant Activated ER Suspensions," J. Coll. Interface Sci., 236, 225-232(2001).
  16. Klass, D. L. and Martinek, T.W., "Electro-viscous Fluids," J. Appl. Phys. 38, 67-75(1967).
  17. Klingenberg, D. J. and Zukoski, C. F., "Studies on the Stedy-shear Behavior of Electrorheological Suspensions," Langmuir, 6, 15-24(1990).
  18. Davis, L. C. and Ginder, J. M., "Elevtrostatic Forces in Electro-rheological Fluids," Progress in Electrorheology, ed. by K.O. Havelka and F.E. Filisko, New York, Plenum, 107-111(1995).
  19. Foulc, J. N., Atten, P. and Felici, N., "Macroscopic Model of Interaction between Particles in an Electrotheological Fluid," J. Electrostatics, 33, 103-112(1994).
  20. Parthasarathy, M. and Klingenberg, D. J., "Electrorheology: Mechanisms and Models," Mater. Sci. Eng., R17, 57-103(1996).
  21. Von Hippel A. R., Dielectric Materials and Applications, Cambridge and Wiley, New York(1954).
  22. Kim, Y. D. and Park, D. H., "The Electrorheological Responses of Suspensions of Polypyrrole-coated Polyethylene Particles," Colloid Polym. Sci., 280, 828-834(2002).
  23. Onsagar, L., "Deviation from Ohm's Law in Weak Electrolytes," J. Chem. Phys., 2, 599-615(1934).
  24. Klingenberg, D. J., Dierking, D. and Zukoski, C. F., "Stress Transfer Mechanism in Electrorheological Suspensions," J. Chem. Soc. Faraday Trans., 87, 425-430(1991).