The Effect of Calcination Temperature on the Layered Li1.05Ni0.9Co0.05Ti0.05O2 for Lithium-ion Battery

리튬이온전지용 층상 Li1.05Ni0.9Co0.05Ti0.05O2에 대한 소성 온도의 영향

  • Ko, Hyoung Shin (New Meterial R&D Center, Huayou New Energy Technology Co., Ltd.) ;
  • Park, Hyun Woo (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • 고형신 (화유신에너지 전지재료연구소) ;
  • 박현우 (충북대학교 화학공학과) ;
  • 이종대 (충북대학교 화학공학과)
  • Received : 2018.03.16
  • Accepted : 2018.07.31
  • Published : 2018.10.01


In this study, the $Ni_{0.9}Co_{0.05}Ti_{0.05}(OH)_2$ precursor was prepared by the concentration gradient co-precipitation method. In order to overcome the structural change due to oxygen desorption in the cathode active material with high nickel content, the physical and electrochemical analysis of the cathode active material according to the calcination temperature were investigated. Physical properties of $Li_{1.05}Ni_{0.9}Co_{0.05}Ti_{0.05}O_2$ were analyzed by FE-SEM, XRD and TGA. The electrochemical performance of the coin cell using a cathode active material and $LiPF_6$(EC:EMC=1:2 vol%) electrolyte was evaluated by the initial charge/discharge efficiency, cycle retention, and rate capabilities. As a result, the initial capacity and initial efficiency of cathode materials were excellent with 244.5~247.9 mAh/g and 84.2~85.8% at the calcination temperature range of $750{\sim}760^{\circ}C$. Also, the capacity retention exhibited high stability of 97.8~99.1% after 50cycles.


Calcination temperature;Structural change;Concentration gradient;Oxygen desorption;Cathode material


  1. Tarascon, J. M. and Armand, M., "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, 414, 359-367(2001).
  2. Armand, M. and Tarascon, J. M., "Building Better Batteries," Nature, 451, 652-627(2008).
  3. Pacala, S. and Socolow, R., "Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies," Science, 305, 968-971(2004).
  4. Jo, Y. J. and Lee, J. D., "Electrochemical Performance of Graph- ite/Silicon/Carbon Composites as Anode Materials for Lithiumion Batteries," Korean Chem. Eng. Res., 56(3), 320-326(2018).
  5. Ohzuku, T. and Ueda, A., "Why Transition Metal (di) Oxides are the Most Attractive Materials for Batteries," Solid State Ionics, 69, 201-211(1994).
  6. Vu, D. L. and Lee, J. W., "Properties of $LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$ as a High Energy Cathode Material for Lithium-ion Batteries," Korean J. Chem. Eng., 33(2), 514-526(2016).
  7. Ceder, G., Chiang, Y. M., Sadoway, D. R., Aydinol, M. K., Jang, Y. I. and Huang, B., "Identification of Cathode Materials for Lithium Batteries Guided by First-principles Calculations," Nature, 392, 694-696(1998).
  8. Breger, J., Jiang, M., Dupre, N., Meng, Y. S., Shao-Horn, Y., Ceder, G. and Grey, C. P., "High-resolution X-ray Diffraction, DIFFaX, NMR and First Principles Study of Disorder in the $Li_2MnO_3-Li[Ni_{1/2}Mn_{1/2}]O_2$ Solid Solution," J. Solid State Chem., 178, 2575-2585(2005).
  9. Lee, M. H., Kang, Y. J., Myung, S. T. and Sun, Y. K., "Synthetic Optimization of $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ via Co-precipitation," Electrochim. Acta, 50, 939-948(2004).
  10. Jung, S. K., Gwon, H., Hong, J., Park, K. Y., Seo, D. H., Kim, H., Hyun, J., Yang, W. and Kang, K., "Understanding the Degra- dation Mechanisms of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathode Material in Lithium Ion Batteries," Advanced Energy Materials, 4, 1300787 (2014).
  11. Xu, J., Chen, X., Wang, C., Yang, L., Gao, X., Zhou, Y., Xiao, K. and Xi, X., "Nano-$Y_2O_3$-coated $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathodes with Enhanced Electrochemical Stability under High Cut-off Voltage and High Temperature," Ceram. Int., 43, 11848-11854(2017).
  12. Sun, Y. K., Noh, H. J. and Yoon, C. S., "Effect of Mn Content in Surface on the Electrochemical Properties of Core-Shell Structured Cathode Materials," J. Electrochem. Soc., 159, A1-A5(2012).
  13. Cho, T. H., Park, S. M., Yoshio, M., Hirai, T. and Hedeshima, Y., "Effect of Synthesis Condition on the Structural and Electro- chemical Properties of $Li[Ni_{1/3}Mn_{1/3}Co_{1/3}]O_2$ Prepared by Carbonate Co-precipitation Method," J. Power Sources, 142, 306-312(2005).
  14. Ko, H. S., Kim, J. H., Wang, J. and Lee, J. D., "Co/Ti Co-substituted Layered $LiNiO_2$ Prepared Using a Concentration Gradient Method as an Effective Cathode Material for Li-ion Battries," J. Power Sources, 372, 107-115(2017).
  15. Patoux, S. and Doeff, M. M., "Direct Synthesis of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ from Nitrate Precursors," Electrochem. Commun., 6, 767-772(2004).
  16. Luo, X., Wang, X., Laio, L., Wang, X., Gamboa, S. and Sebastian, P. J., "Effects of Synthesis Conditions on the Structural and Electrochemical Properties of Layered $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ Cathode Material via the Hydroxide Co-precipitation Method LIB SCITECH," J. Power Sources, 161, 601-605(2006).
  17. Reimers, J. N., Rossen, E., Jones, C. D. and Dahn, J. R., "Structure and Eletrochemistry of $Li_xFe_yNi_{1-y}O_2$," Solid State Ionics, 61, 335-334(1993).
  18. Dahn, J. R., Fuller, E. W., Obrovac, M. and von Sacken, U., "Thermal Stability of $Li_xCoO_2$, $Li_xNiO_2$ and ${\lambda}-MnO_2$ and Consequences for the Safety of Li-ion Cells," Solid State Ionics, 69, 265-270(1994).
  19. Park, B. C., Kim, H. B., Myung, S. T., Amine, K., Belharouak, I., Lee, S. M. and Sun, Y. K., "Improvement of Structural and Electrochemical Properties of $AlF_3$-coated $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ Cathode Materials on High Voltage Region," J. Power Sources, 178, 826-831(2008).
  20. Zheng, J., Yan, P., Estevez, L., Wang, C. and Zhang, J. G., "Effect of Calcination Temperature on the Electrochemical Properties of Nickel-rich $LiNi_{0.76}Mn_{0.14}Co_{0.10}O_2$ Cathodes for Lithium-ion Batteries," Nano Energy, 49, 538-548(2018).
  21. Park, T. J., Lim, J. B. and Son, J. T., "Effect of Calcination Tem- perature of Size Controlled Microstructure of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ Cathode for Rechargeable Lithium Battery," Bull. Korean Chem. Soc., 35, 357-364(2014).