DOI QR코드

DOI QR Code

SnO2 Mixed Banana Peel Derived Biochar Composite for Supercapacitor Application

  • Kaushal, Indu (Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology) ;
  • Maken, Sanjeev (Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology) ;
  • Kumar Sharma, Ashok (Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology)
  • Received : 2018.01.20
  • Accepted : 2018.06.29
  • Published : 2018.10.01

Abstract

Novel $SnO_2$ mixed biochar composite was prepared from banana peel developed as electrode material for supercapacitor using simple chemical co-precipitation method. The physiochemical and morphological properties of activated composite $SnO_2$ mixed biochar were investigated with XRD, FTIR, UV-vis, FESEM and HRTEM. The composite accounts for outstanding electrochemical behavior such as high specific capacitance, significant rate capability and leading to good cycle retention up to 3500 cycles when used as electrode material for supercapacitors. Highly permeable $SnO_2$ mixed biochar derived from banana peel exhibited maximum specific capacitance of $465F\;g^{-1}$ at a scan rate of $10mV\;s^{-1}$ by cyclic voltammetry (CV) and $476Fg^{-1}$ at current density of $0.15Ag^{-1}$ by charge discharge studies significantly higher about 47% than previously reported identical work on banana peel biochar.

Keywords

$SnO_2$;Biochar;Specific capacitance;Supercapacitor;Composite

Acknowledgement

Supported by : University Grants Commission

References

  1. Wang, L., Li, X., Ma, J., Wu, Q. and Duan, X., "Non-activated, N, Sco-doped Biochar Derived from Banana with Superior Capacitive Properties," Sust. Energy., 2(2), 39-43(2014).
  2. Pham, H. D., Pham, V. H., Oh, E.-S., Chung, J. S. and Kim, S., "Synthesis of Polypyrrole-reduced Graphene Oxide Composites by in-situ Photopolymerization and its Application as a Supercapacitor Electrode," Korean Chem. Engg. Res., 29(1), 125-129 (2012). https://doi.org/10.1007/s11814-011-0145-y
  3. Kim, K. M., Lee, Y. G. and Ko, J. M., "Electrochemical Proper- ties of Activated Carbon Supecapacitor Adopting Poly(acrylonitrile) Separator Coated by Polymer-alkaline Electrolytes," Korean Chem. Engg. Res., 55(4), 467-472(2017).
  4. Bagheri, A. R., Ghaedi, M., Asfaram, A., Jannesar, R. and Goudarzi, A., "Design and Construction of Nanoscale Material for Ultrasonic Assisted Adsorption of Dyes: Application of Derivative Spectro-photometry and Experimental Design Methodology," Ultrason. Sonochem., 35(a), 112-123(2017). https://doi.org/10.1016/j.ultsonch.2016.09.008
  5. Machado, F. M., Bergmann, C. P., Fernandes, T. H., Lima, E. C., Royer, B., Calvete, T. and Fagan, S. B., "Adsorption of Reactive Red M-2BE Dye from Water Solutions by Multi-walled Carbon Nanotubes and Activated Carbon," J. Hazard. Mater., 192(3), 1122-1131(2011). https://doi.org/10.1016/j.jhazmat.2011.06.020
  6. Wang, H., Xu, Z., Kohandehghan, A., Li, Z., Cui, K., Tan, X., Stephenson, T. J., King'ondu, C. K., Holt, C. M. and Olsen, B. C., "Interconnected Carbon Nanosheets Derived from Hemp for Ultrafast Supercapacitors with High Energy," ACS Nano, 7(6), 5131-5141(2013). https://doi.org/10.1021/nn400731g
  7. Yao, Y. and Wu, F., "Naturally Derived Nanostructured Materials from Biomass for Rechargeable Lithium/sodium Batteries," Nano Energy., 17, 91-103(2015). https://doi.org/10.1016/j.nanoen.2015.08.004
  8. Song, S., Ma, F., Wu, G., Ma, D., Geng, W. and Wan, J., "Facile Self-templating Large Scale Preparation of Biomass-derived 3D Hierarchical Porous Carbon for Advanced Supercapacitors," J. Mater. Chem. A, 3(35), 18154-18162(2015). https://doi.org/10.1039/C5TA04721H
  9. Ma, G., Zhang, Z., Sun, K., Peng, H., Yang, Q., Ran, F. and Lei, Z., "White Clover Based Nitrogen-doped Porous Carbon for a High Energy Density Supercapacitor Electrode," RSC Adv., 5 (130), 107707-107715(2015). https://doi.org/10.1039/C5RA20327A
  10. Wang, P., Qiao, B., Du, Y., Li, Y., Zhou, X., Dai, Z. and Bao, J., "Fluorine-doped Carbon Particles Derived from Lotus Petioles as High-performance Anode Materials for Sodium-ion Batteries," J. Phys. Chem. C, 119(37), 21336-21344(2015). https://doi.org/10.1021/acs.jpcc.5b05443
  11. Ding, J., Wang, H., Li, Z., Cui, K., Karpuzov, D., Tan, X., Kohan- dehghan, A. and Mitlin, D., "Peanut Shell Hybrid Sodium ion Capacitor with Extreme Energy-power Rivals Lithium ion Capacitors," Energy Environ. Sci., 8(3), 941-955(2015). https://doi.org/10.1039/C4EE02986K
  12. Thangavel, R., Kaliyappan, K., Kang, K., Sun, X. and Lee, Y. S., "Going Beyond Lithium Hybrid Capacitors: Proposing a New High-performing Sodium Hybrid Capacitor System for Next- generation Hybrid Vehicles Made with Bio-inspired Activated Carbon," Adv. Energy Mater., 6(7), 1-9(2016).
  13. Peng, H., Ma, G., Sun, K., Zhang, Z., Yang, Q. and Lei, Z., "Nitrogen-doped Interconnected Carbon Nanosheets from Pomelo Mesocarps for High Performance Supercapacitors," Electrochim. Acta., 190, 862-871(2016). https://doi.org/10.1016/j.electacta.2015.12.195
  14. Yuan, H., Deng, L., Qi, Y., Kobayashi, N. and Tang, J., "Nonactivated and Activated Biochar Derived from Bananas as Alternative Cathode Catalyst in Microbial Fuel Cells," Sci. World Journal., 2014, 1-8(2014).
  15. Divyashree, A., Shoriya, A. B. A. M., Yallappa, S., Chaitra, K., Kathyayini, N., and Hegde, G., "Low Cost, High Performance Supercapacitor Electrode Using Coconut Wastes: Eco-friendly Approach," J. Energy Chem., 25(5), 880-887(2016). https://doi.org/10.1016/j.jechem.2016.08.002
  16. Zhu, G., Ma, L., Lv, H., Hu, Y., Chen, T., Chen, R., Liang, J., Wang, X., Wang, Y. and Yan, C., "Pine Needle-derived Microporous Nitrogen-doped Carbon Frameworks Exhibit High Performances in Electrocatalytic Hydrogen Evolution Reaction and Supercapacitors," Nanoscale, 9(3), 1237-1243(2017). https://doi.org/10.1039/C6NR08139H
  17. Thambidurai, A., Lourdusamy, J. K., John, J. V. and Ganesan, S. "Preparation and Electrochemical Behaviour of Biomass Based Porous Carbons as Electrodes for Supercapacitors-a Comparative Investigation," Korean J. Chem. Eng., 31(2), 268-275(2014). https://doi.org/10.1007/s11814-013-0228-z
  18. Maurya, D. P., Singla, A. and Negi, S., "An Overview of Key Pretreatment Processes for Biological Conversion of Lignocellulosic Biomass to Bioethanol," Biotech., 5(5), 597-609(2015).
  19. Liu, Z. and Balasubramanian, R., "Upgrading of Waste Biomass by Hydrothermal Carbinization (HTC) and Low Temperature Pyrolysis (LTP): a Comparative Evaluation," 115, 857-864(2014).
  20. Chun, Y., Sheng, G., Chiou, C. T. and Xing, B., "Compositions and Sorptive Properties of Crop Residue-derived Chars," Environ. Sci. Technol., 38(17), 4649-4655(2004). https://doi.org/10.1021/es035034w
  21. Wang, M., Sheng, G. and Qiu, Y., "A Novel Manganese-oxide/Biochar Composite for Efficient Removal of Lead (II) from Aqueous Solutions," Int. J. Environ. Sci. Technol., 12(5), 1719- 1726(2015). https://doi.org/10.1007/s13762-014-0538-7
  22. Huang, X., Kim, M., Suh, H. and Kim, I., "Hierarchically Nano-structured Carbon-supported Manganese Oxide for High-performance Pseudo-capacitors," Korean J. Chem. Eng., 33(7), 2228- 2234(2016). https://doi.org/10.1007/s11814-016-0036-3
  23. Kouchachvili, L. and Entchev, E., "Ag/Biochar Composite for Supercapacitor Electrodes," Mater. Today Energy., 6, 136-145(2017). https://doi.org/10.1016/j.mtener.2017.09.002
  24. Yao, W., Zhou, H. and Lu, Y., "Synthesis and Property of Novel $MnO_2$@polypyrrole Coaxial Nanotubes as Electrode Material for Supercapacitors," J. Power Sources., 241, 359-366(2013). https://doi.org/10.1016/j.jpowsour.2013.04.142
  25. Sultana, S., Kishore, D., Kuniyil, M., Khan, M., Siddiqui, M. R. H., Alwarthan, A., Prasad, K., Ahmad, N. and Adil, S. F., "Promoting Effects of Thoria on the Nickel-manganese Mixed Oxide Catalysts for the Aerobic Oxidation of Benzyl Alcohol," Arab. J. Chem., 10(4), 448-457(2017). https://doi.org/10.1016/j.arabjc.2017.01.017
  26. Varala, R., Narayana, V., Kulakarni, S. R., Khan, M., Alwarthan, A. and Adil, S. F., "Sulfated tin Oxide (STO)-Structural Properties and Application in Catalysis: A Review," Arab. J. Chem., 9(4), 550-573(2016). https://doi.org/10.1016/j.arabjc.2016.02.015
  27. Zhao, Y., Rana, W., Xiong, D.-B., Zhang, L., Xu, J. and Faming, G., "Synthesis of Sn-doped $Mn_3O_4/C$ Nanocomposites as Supercapacitor Electrodes with Remarkable Capacity Retention," Mater. Lett., 118, 80-83(2014). https://doi.org/10.1016/j.matlet.2013.12.061
  28. Channu, V. S. R., Holze, R., Wicker Sr, S. A., Walker Jr, E. H., Williams, Q. L. and Kalluru, R. R., "Synthesis and Characterization of $(Ru-Sn)O_2$ Nanoparticles for Supercapacitors," Mater. Sci. Appl., 2(9), 1175-1179(2011).
  29. Sun, P., Hui, C., Khan, R. A., Du, J., Zhang, Q. and Zhao, Y.-H., "Efficient Removal of Crystal Violet Using $Fe_3O_4$-coated Biochar: the Role of the $Fe_3O_4$ Nanoparticles and Modeling Study Their Adsorption Behavior," Sci. Rep., 5, 12638(2015). https://doi.org/10.1038/srep12638
  30. Chaudhary, G., Sharma, A. K., Bhardwaj, P., Kant, K., Kaushal, I. and Mishra, A. K., "$NiCo_2O_4$ Decorated PANI-CNTs Composites as Supercapacitive Electrode Materials," J. Energy Chem., 26(1), 175-181(2017). https://doi.org/10.1016/j.jechem.2016.09.013
  31. Ragupathy, S. and Sathya, T., "Synthesis and Characterization of $SnO_2$ Loaded on Groundnut Shell Activated Carbon and Photocatalytic Activity on MB Dye Under Sunlight Radiation," J. Mater. Sci. Mater. Electron., 27(6), 5770-5778(2016). https://doi.org/10.1007/s10854-016-4491-8
  32. Hesas, R. H., Arami-Niya, A., Daud, W. M. A. W. and Sahu, J., "Preparation and Characterization of Activated Carbon from Apple Waste by Microwave-assisted Phosphoric Acid Activation: Application in Methylene Blue Adsorption," BioResour., 8(2), 2950-2966(2013).
  33. Gundrizer, T. and Davydov, A., "IR Spectra of Oxygen Adsorbed on $SnO_2$," Reaction Kinet. Catal. Lett., 3(1), 63-70(1975). https://doi.org/10.1007/BF02216890
  34. Gu, F., Wang, S. F., Song, C. F., Lu, M. K., Qi, Y. X., Zhou, G. J., Xu, D. and Yuan, D. R., "Synthesis and Luminescence Properties of $SnO_2$ Nanoparticles," Chem. Phys. Lett., 372(3), 451-454 (2003). https://doi.org/10.1016/S0009-2614(03)00440-8
  35. Zhou, J., Zhang, M., Hong, J., Fang, J. and Yin, Z., "Structural and Spectral Properties of $SnO_2$ Nanocrystal Prepared by Microemulsion Technique," Appl. phys. A, 81(1), 177-182(2005). https://doi.org/10.1007/s00339-004-2742-7
  36. Launcr, H., Wilson, W. and Flynn, J. H., "Determination of Glucose by Means of Sodium Chlorite," J. Res. Natl. Bur. Stand., 51, 5(1953).
  37. Launcr, H., Wilson, W. and Flynn, J. H., "Determination of Glucose by Means of Sodium Chlorite," J. Res. Natl. Bur. Stand., 51(5), 237-245(1953). https://doi.org/10.6028/jres.051.031
  38. Tapre, A. and Jain, R., "Study of Advanced Maturity Stages of Banana," Int. J. Adv. Eng. Res. Stud, 1 (3), 272-274(2012).
  39. Kumar, K. S. and Bhowmik, D., "Traditional and Medicinal Uses of Banana," J. Pharmacogn. Phytochem., 1, 3(2012).
  40. Gu, F., Wang, S. F., Lu, M. K., Zhou, G. J., Xu, D. and Yuan, D. R., "Photoluminescence Properties of $SnO_2$ Nanoparticles Synthesized by Sol-gel Method," J. Phys. Chem. B., 108(24), 8119- 8123(2004). https://doi.org/10.1021/jp036741e
  41. Bhagwat, A. D., Sawant, S. S., Ankamwar, B. G. and Mahajan, C. M., "Synthesis of Nanostructured tin Oxide ($SnO_2$) Powders and Thin Films by Sol-gel Method," J. Nano Electron. Phys., 7(4), 4037-4031(2015).
  42. Genovese, M., Jiang, J., Lian, K. and Holm, N., "High Capacitive Performance of Exfoliated Biochar Nanosheets from Biomass Waste Corn Cob," J. Mater. Chem. A., 2015(3), 2903-2913(2014).
  43. El Korhani, O., Zaouk, D., Cerneaux, S., Khoury, R., Khoury, A. and Cornu, D., "Synthesis and Performances of Bio-sourced Nanostructured Carbon Membranes Elaborated by Hydrothermal Conversion of Beer Industry Wastes," Nanoscale Res. Lett., 8(121), 3-11(2013). https://doi.org/10.1186/1556-276X-8-3
  44. Li, X., Li, T., Zhong, Q., Zhang, X., Li, H. and Huang, J., "A Hybrid of $SnO_2$ Nanorods Interlaced by Unzipped Carbon Nanotube to Enhance Electrochemical Properties for Lithium ion Battery," Mater. Lett., 130, 232-235(2014). https://doi.org/10.1016/j.matlet.2014.05.117
  45. Wang, L., Shen, L., Zhu, L., Jin, H., Bing, N. and Wang, L., "Preparation and Photocatalytic Properties of $SnO_2$ Coated on Nitrogen-doped Carbon Nanotubes," J. Nanomater., 2012, 32(2012).
  46. Chen, S., Xin, Y., Zhou, Y., Zhang, F., Ma, Y., Zhou, H. and Qi, L., "Branched CNT@ $SnO_2$ Nanorods@ Carbon Hierarchical Heterostructures for Lithium ion Batteries with High Reversibility and Rate Capability," J. Mater. Chem. A, 2(37), 15582-15589(2014). https://doi.org/10.1039/C4TA03218G
  47. Salunkhe, R. R., Jang, K., Yu, H., Yu, S., Ganesh, T., Han, S.-H. and Ahn, H., "Chemical Synthesis and Electrochemical Analysis of Nickel Cobaltite Nanostructures for Supercapacitor Applications," J. Alloys Compd., 509(23), 6677-6682(2011). https://doi.org/10.1016/j.jallcom.2011.03.136
  48. Wang, K., Wu, H., Meng, Y. and Wei, Z., "Conducting Polymer Nanowire Arrays for High Performance Supercapacitors," Small, 10(1), 14-31(2014). https://doi.org/10.1002/smll.201301991
  49. Sun, J. Q., Wang, J. S., Wu, X. C., Zhang, G. S., Wei, J. Y., Zhang, S. Q., Li, H. and Chen, D. R., "Novel Method for Highyield Synthesis of Rutile $SnO_2$ Nanorods by Oriented Aggregation," Cryst. Growth Des., 6(7), 1584-1587(2006). https://doi.org/10.1021/cg050574l
  50. Shaziman, S., Ismail, A. S., Mamat, M. H. and Zoolfakar, A. S., "Influence of Growth Time and Temperature on the Morphology of Zno Nanorods via Hydrothermal," IOP Publishing, City., 99(4), 012016(2015).
  51. Wahid, K. A., Lee, W. Y., Lee, H. W., Teh, A. S., Bien, D. C. S. and Azid, I. A., "Effect of Seed Annealing Temperature and Growth Duration on Hydrothermal ZnO Nanorod Structures and Their Electrical Characteristics," Appl. Surf. Sci., 283(15), 629-635(2013). https://doi.org/10.1016/j.apsusc.2013.06.159
  52. Mane, R. S., Chang, J., Ham, D., Pawar, B. N., Ganesh, T., Cho, B. W., Lee, J. K. and Han, S.-H., "Dyesensitized Solar Cell and Electrochemical Supercapacitor Applications of Electrochemically Deposited Hydrophilic and Nanocrystalline tin Oxide Film Electrodes," Curr. Appl. Phys., 9(1), 87-91(2009). https://doi.org/10.1016/j.cap.2007.11.013
  53. Jiang, J., Zhang, L., Wang, X., Holm, N., Rajagopalan, K., Chen, F. and Ma, S., "Highly Ordered Macroporous Woody Biochar with Ultra-high Carbon Content as Supercapacitor Electrodes," Electrochim. Acta, 113, 481-489(2013). https://doi.org/10.1016/j.electacta.2013.09.121
  54. Chen, L.-F., Zhang, X.-D., Liang, H.-W., Kong, M., Guan, Q.-F., Chen, P., Wu, Z.-Y. and Yu, S.-H., "Synthesis of Nitrogen-doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors," ACS Nano, 6(8), 7092-7102(2012). https://doi.org/10.1021/nn302147s
  55. Zheng, J. and Jow, T., "A New Charge Storage Mechanism for Electrochemical Capacitors," J. Electrochem. Soc., 142(1), L6-L8(1995). https://doi.org/10.1149/1.2043984
  56. Srinivasan, V. and Weidner, J. W., "An Electrochemical Route for Making Porous Nickel Oxide Electrochemical Capacitors," J. Electrochem. Soc., 144(8), L210-L213(1997). https://doi.org/10.1149/1.1837859
  57. Lin, C., Ritter, J. A. and Popov, B. N., "Development of Carbon- metal Oxide Supercapacitors from Sol-gel Derived Carbon-ruthenium Xerogels," J. Electrochem. Soc., 146(9), 3155-3160(1999). https://doi.org/10.1149/1.1392448
  58. Genovese, M., Jiang, J., Lian, K. and Holm, N., "High Capaci- tive Performance of Exfoliated Biochar Nanosheets from Biomass Waste Corn Cob," J. Mater. Chem. A, 3(6), 2903-2913(2015). https://doi.org/10.1039/C4TA06110A
  59. Lei, Z., Sun, X., Wang, H., Liu, Z. and Zhao, X., "Platelet CMK-5 as an Excellent Mesoporous Carbon to Enhance the Pseudoca-pacitance of Polyaniline," ACS Appl. Mater. Interfaces., 5(15), 7501-7508(2013). https://doi.org/10.1021/am4018016
  60. Chen, H., Zhou, S., Chen, M. and Wu, L., "Reduced Graphene Oxide-$MnO_2$ Hollow Sphere Hybrid Nanostructures as High-performance Electrochemical Capacitors," J. Mater. Chem., 22(48), 25207-25216(2012). https://doi.org/10.1039/c2jm35054h
  61. Kim, J. G., Nam, S. H., Lee, S. H., Choi, S. M. and Kim, W. B., "$SnO_2$ Nanorod-planted Graphite: an Effective Nanostructure Configuration for Reversible Lithium ion Storage," ACS Appl. Mater. Interfaces., 3(3), 828-835(2011). https://doi.org/10.1021/am101169k
  62. Park, M.-S., Wang, G.-X., Kang, Y.-M., Wexler, D., Dou, S.-X. and Liu, H.-K., "Preparation and Electrochemical Properties of $SnO_2$ Nanowires for Application in Lithiumion Batteries," Angew. Chem., 119(5), 764-767(2007). https://doi.org/10.1002/ange.200603309
  63. Liu, Y., Jiao, Y., Zhang, Z., Qu, F., Umar, A. and Wu, X., "Hierarchical $SnO_2$ Nanostructures Made of Intermingled Ultrathin Nanosheets for Environmental Remediation, Smart Gas Sensor, and Supercapacitor Applications," ACS Appl. Mater. Interfaces, 6(3), 2174-2184(2014). https://doi.org/10.1021/am405301v
  64. Yang, X., Zhu, J., Qiu, L. and Li, D., "Bioinspired Effective Prevention of Restacking in Multilayered Graphene Films: Towards the Next Generation of High-performance Supercapacitors," Adv. Mater., 23(25), 2833-2838(2011). https://doi.org/10.1002/adma.201100261
  65. Kim, C., Ngoc, B. T. N., Yang, K. S., Kojima, M., Kim, Y. A., Kim, Y. J., Endo, M. and Yang, S. C., "Self-sustained Thin Webs Consisting of Porous Carbon Nanofibers for Supercapacitors via the Electrospinning of Polyacrylonitrile Solutions Containing Zinc Chloride," Adv. Mater., 19(17), 2341-2346(2007). https://doi.org/10.1002/adma.200602184
  66. Xiao, F. and Xu, Y., "Electrochemical co-deposition and Char- acterization of $MnO_2$/SWNT Composite for Supercapacitor Application," J. Mater. Sci. - Mater. Electron., 24(6), 1913-1920(2013). https://doi.org/10.1007/s10854-012-1034-9
  67. Wang, Y., Zhang, Y., Pei, L., Ying, D., Xu, X., Zhao, L., Jia, J. and Cao, X., "Converting Ni-loaded Biochars Into Supercapacitors: Implication on the Reuse of Exhausted Carbonaceous Sorbents," Sci. Rep., 7, (2017).