Carbon-free Polymer Air Electrode based on Highly Conductive PEDOT Micro-Particles for Li-O2 Batteries

  • Yoon, Seon Hye (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kim, Jin Young (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Park, Yong Joon (Department of Advanced Materials Engineering, Kyonggi University)
  • Received : 2018.05.18
  • Accepted : 2018.06.20
  • Published : 2018.09.30


This study introduced a carbon-free electrode for $Li-O_2$ cells with the aim of suppressing the side reactions activated by carbon material. Micro-particles of poly(3,4-ethylenedioxythiophene) (PEDOT), a conducting polymer, were used as the base material for the air electrode of $Li-O_2$cells. The PEDOT micro-particles were treated with $H_2SO_4$ to improve their electronic conductivity, and LiBr and CsBr were used as the redox mediators to facilitate the dissociation of there action products in the electrode and reduce the over-potential of the $Li-O_2$ cells. The capacity of the electrode employing PEDOT micro-particles was significantly enhanced via $H_2SO_4$ treatment, which is attributed to the increased electronic conductivity. The considerable capacity enhancement and relatively low over-potential of the electrode employing $H_2SO_4$-treated PEDOT micro-particles indicate that the treated PEDOT micro-particles can act as reaction sites and provide storage space for the reaction products. The cyclic performance of the electrode employing $H_2SO_4$-treated PEDOT micro-particles was superior to that of a carbon electrode. The results of the Fourier-transform infrared spectroscopic analysis showed that the accumulation of residual reaction products during cycling was significantly reduced by introducing the carbon-free electrode based on $H_2SO_4$-treated PEDOT micro-particles, compared with that of the carbon electrode. The cycle life was improved owing to the effect of the redox mediators. The refore, the use of the carbon -free electrode combined with redox mediators could realize excellent cyclic performance and low over-potential simultaneously.


Supported by : Kyonggi University


  1. M.S. Whittingham, Chem. Rev., 2004, 104(10), 4271-4302.
  2. J.B. Goodenough and K.S. Park, J. Am. Chem. Soc., 2013, 135(4) 1167-1176.
  3. M.H. Pyun and Y.J. Park, J. Alloy. Compd., 2015, 643, S90-S94.
  4. B. Scrosati and J. Garche, J. Power Sources, 2010, 195(9), 2419-2430.
  5. H.J. Lee and Y.J. Park, J. Power Sources, 2013, 244, 222-233.
  6. H.D. Lim, B. Lee, Y. Zheng, J. Hong, J. Kim, H. Gwon, Y. Ko, M. Lee, K. Cho and K. Kang, Nat. Energy, 2016, 1(6), 16066.
  7. J.S. Lee, S.T. Kim, R. Cao, N.S. Choi, M. Liu, K.T. Lee and J. Cho, Adv. Energy Mater., 2011, 1(1), 34-50.
  8. W.H. Ryu, T.H. Yoon, S.H. Song, S. Jeon, Y.J. Park and I.D. Kim, Nano Lett., 2013, 13(9), 4190-4197.
  9. T.H. Yoon and Y.J. Park, J. Power Sources, 2013, 244, 344-353.
  10. B.D. Adams, C. Radtke, R. Black, M.L. Trudeau, K. Zaghib and L.F. Nazar, Energy Environ. Sci., 2013, 6(6), 1772-1778.
  11. A.C. Luntz and B.D. McCloskey, Chem. Rev., 2014, 114(23), 11721-11750.
  12. A. Kraytsberg and Y. Ein-Eli, J. Power Sources, 2011, 196(3), 886-893.
  13. P. Tan, H.R. Jiang, X.B. Zhu, L. An, C.Y. Jung, M.C. Wu, L. Shi, W. Shyy and T.S. Zhao, Appl. Energy, 2017, 204, 780-806.
  14. R. Black, B. Adams and L.F. Nazar, Adv. Energy Mater., 2012, 2(7), 801-815.
  15. Z. Peng, S.A. Freunberger, Y. Chen and P.G. Bruce, Science, 2012, 337, 563-566.
  16. H. Kim, H.D. Lim, J. Kim and K. Kang, J. Mater. Chem. A, 2014, 2(1), 33-47.
  17. F. Li, T. Zhang and H. Zhou, Energy Environ. Sci., 2013, 6(4), 1125-1141.
  18. P.G. Bruce, S.A. Freunberger, L.J. Hardwick and J.M. Tarascon, Nat. Mater., 2012, 11(1), 19-29.
  19. B.M. Gallant, D.G. Kwabi, R.R. Mitchell, J. Zhou, C.V. Thompson and Y. Shao-Horn, Energy Environ. Sci., 2013, 6(8), 2518-2528.
  20. C.S. Park, K.S. Kim and Y.J. Park, J. Power Sources, 2013, 244, 72-79.
  21. K.R. Yoon, D.S. Kim, W.H. Ryu, S.H. Song, D.Y. Youn, J.W. Jung, S. Jeon, Y.J. Park and I.D. Kim, Chemsuschem., 2016, 9(16), 2080-2088.
  22. J. Lu, Y.J. Lee, et al, Nature, 2016, 529(7586), 377-382.
  23. Z.W. Chang, J.J. Xu, Q.C. Liu, L. Li and X.B. Zhang, Adv. Energy Mater., 2015, 5(21), 1500633.
  24. D.S. Kim and Y.J. Park, Electrochim. Acta, 2014, 132, 297-306.
  25. A. Debart, A.J. Paterson, J. Bao and P.G. Bruce, Angew. Chem., 2008, 120, 4597-4600.
  26. W.J. Kwak, D. Hirshberg, D. Sharon, M. Afri, A.A. Frimer, H.G. Jung, D. Aurbach and Y.K. Sun, Energy Environ. Sci., 2016, 9(7), 2334-2345.
  27. T. Liu, M. Leskes, W. Yu, A.J. Moore, L. Zhou, P.M. Bayley, G. Kim and C.P. Grey, Science, 2015, 350(6260), 530-533.
  28. C.K. Lee and Y.J. Park, ACS Appl. Mater. Interfaces, 2016, 8(13), 8561-8567.
  29. X. Gao, Y. Chen, L. Johnson and P.G. Bruce, Nat. Mater., 2016, 15(8), 882-888.
  30. H.D. Lim, K.Y. Park, H. Song, E.Y. Jang, H. Gwon, J. Kim, Y.H. Kim, M.D. Lima, R.O. Robles, X. Lepro, R.H. Baughman and K. Kang, Adv. Mater., 2013, 25(9), 1348-1352.
  31. T.H. Yoon and Y.J. Park, RSC Adv., 2014, 4(34), 17434-17442.
  32. S.H. Yoon and Y.J. Park, Sci. Rep., 2017, 7, 42617.
  33. Y.C. Lu and Y. Shao-Horn, J. Phys. Chem. Lett., 2012, 4(1), 93-99.
  34. D.S. Kim and Y.J. Park, J. Alloy. Compd., 2014, 591, 164-169.
  35. R. Padbury and X. Zhang, J. Power Sources, 2011, 196(10), 4436-4444.
  36. G. Girishkumar, B. McCloskey, A.C. Luntz, S. Swanson and W. Wilcke, J. Phys. Chem. Lett., 2010, 1(14), 2193-2203.
  37. M.M. Ottakam Thotiyl, S.A. freunberger, Z. Peng and P.G. Bruce, J. Am. Chem. Soc., 2012, 135, 494-500.
  38. B. D. McCloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshoj, J. K. Norskov and A. C. Luntz, J. Phys. Chem. Lett., 2012, 3(8), 997-1001.
  39. C.K. Lee, Y.J. Park, Chem. Commun., 2015, 51(7), 1210-1213.
  40. D.H. Yoon, S.H. Yoon, K.S. Ryu and Y.J. Park, Sci. Rep., 2016, 6, 19962.
  41. J.Y. Kim and Y.J. Park, Sci. Rep., 2017, 7, 8610.
  42. S.H. Yoon and Y.J. Park, RSC Adv., 2017, 7(89), 56752-56759.
  43. N.R. Kim, S.Y. Kee, S.H. Lee, B. H. Lee, Y.H. Kahng, Y.-R. Jo, B.-J. Kim and K.H. Lee, Adv. Mater., 2014, 26(14), 2268-2272.
  44. M.M. Ottakam Thotiyl, S.A. Freunberger, Z. Peng, Y. Chen, Z. Liu and P.G. Bruce, Nature Mater., 2013, 12(11), 1050-1056.
  45. C.K. Lee and Y.J. Park, Nanoscale Res. Lett., 2015, 10(1), 319.
  46. A. Riaz, K.N. Jung, W. Chang, S.B. Lee, T.H. Lim, S.J. Park, R.H. Song, S. Yoon, K.H. Shin and J.W. Lee, Chem. Commun., 2013, 49(53), 5984-5986.
  47. Y. Cui, Z. Wen and Y. Liu, Energy Environ. Sci., 2011, 4(11), 4727-4734.