DOI QR코드

DOI QR Code

OPTHiS Identifies the Molecular Basis of the Direct Interaction between CSL and SMRT Corepressor

  • Kim, Gwang Sik (School of Biological Sciences and Technology, Chonnam National University) ;
  • Park, Hee-Sae (School of Biological Sciences and Technology, Chonnam National University) ;
  • Lee, Young Chul (School of Biological Sciences and Technology, Chonnam National University)
  • Received : 2018.05.04
  • Accepted : 2018.07.19
  • Published : 2018.09.30

Abstract

Notch signaling is an evolutionarily conserved pathway and involves in the regulation of various cellular and developmental processes. Ligand binding releases the intracellular domain of Notch receptor (NICD), which interacts with DNA-bound CSL [CBF1/Su(H)/Lag-1] to activate transcription of target genes. In the absence of NICD binding, CSL down-regulates target gene expression through the recruitment of various corepressor proteins including SMRT/NCoR (silencing mediator of retinoid and thyroid receptors/nuclear receptor corepressor), SHARP (SMRT/HDAC1-associated repressor protein), and KyoT2. Structural and functional studies revealed the molecular basis of these interactions, in which NICD coactivator and corepressor proteins competitively bind to ${\beta}-trefoil$ domain (BTD) of CSL using a conserved ${\varphi}W{\varphi}P$ motif (${\varphi}$ denotes any hydrophobic residues). To date, there are conflicting ideas regarding the molecular mechanism of SMRT-mediated repression of CSL as to whether CSL-SMRT interaction is direct or indirect (via the bridge factor SHARP). To solve this issue, we mapped the CSL-binding region of SMRT and employed a 'one- plus two-hybrid system' to obtain CSL interaction-defective mutants for this region. We identified the CSL-interaction module of SMRT (CIMS; amino acid 1816-1846) as the molecular determinant of its direct interaction with CSL. Notably, CIMS contains a canonical ${\varphi}W{\varphi}P$ sequence (APIWRP, amino acids 1832-1837) and directly interacts with CSL-BTD in a mode similar to other BTD-binding corepressors. Finally, we showed that CSL-interaction motif, rather than SHARP-interaction motif, of SMRT is involved in transcriptional repression of NICD in a cell-based assay. These results strongly suggest that SMRT participates in CSL-mediated repression via direct binding to CSL.

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Ann, E.J., Kim, H.Y., Seo, M.S., Mo, J.S., Kim, M.Y., Yoon, J.H., Ahn, J.S., and Park, H.S. (2012). Wnt5a controls Notch1 signaling through CaMKII-mediated degradation of the SMRT corepressor protein. J. Biol. Chem. 287, 36814-36829. https://doi.org/10.1074/jbc.M112.356048
  2. Ariyoshi, M., and Schwabe, J.W. (2003). A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling. Genes Dev. 17, 1909-1920. https://doi.org/10.1101/gad.266203
  3. Borggrefe, T., and Oswald, F. (2009). The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell. Mol. Life Sci. 66, 1631-1646. https://doi.org/10.1007/s00018-009-8668-7
  4. Borggrefe, T., and Oswald, F. (2014). Keeping notch target genes off: a CSL corepressor caught in the act. Structure 22, 3-5. https://doi.org/10.1016/j.str.2013.12.007
  5. Borggrefe, T., and Oswald, F. (2016). Setting the stage for notch: The Drosophila Su(H)-hairless repressor complex. PLoS Biol. 14, e1002524. https://doi.org/10.1371/journal.pbio.1002524
  6. Chen, J.D., and Evans, R.M. (1995). A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454-457. https://doi.org/10.1038/377454a0
  7. Collins, K.J., Yuan, Z., and Kovall, R.A. (2014). Structure and function of the CSL-KyoT2 corepressor complex: a negative regulator of Notch signaling. Structure 22, 70-81. https://doi.org/10.1016/j.str.2013.10.010
  8. Hsieh, J.J., Zhou, S., Chen, L., Young, D.B., and Hayward, S.D. (1999). CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc. Natl. Acad. Sci. USA 96, 23-28. https://doi.org/10.1073/pnas.96.1.23
  9. Huang, E.Y., Zhang, J., Miska, E.A., Guenther, M.G., Kouzarides, T., and Lazar, M.A. (2000). Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes Dev. 14, 45-54.
  10. Johnson, S.E., Ilagan, M.X., Kopan, R., and Barrick, D. (2010). Thermodynamic analysis of the CSL x Notch interaction: distribution of binding energy of the Notch RAM region to the CSL beta-trefoil domain and the mode of competition with the viral transactivator EBNA2. J. Biol. Chem. 285, 6681-6692. https://doi.org/10.1074/jbc.M109.019968
  11. Kao, H.Y., Ordentlich, P., Koyano-Nakagawa, N., Tang, Z., Downes, M., Kintner, C.R., Evans, R.M., and Kadesch, T. (1998). A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev. 12, 2269-2277. https://doi.org/10.1101/gad.12.15.2269
  12. Kim, J.Y., Park, O.G., Lee, J.W., and Lee, Y.C. (2007). One- plus twohybrid system, a novel yeast genetic selection for specific missense mutations disrupting protein/protein interactions. Mol. Cell. Proteomics 6, 1727-1740. https://doi.org/10.1074/mcp.M700079-MCP200
  13. Kim, J.Y., Park, O.G., and Lee, Y.C. (2012). One- plus two-hybrid system for the efficient selection of missense mutant alleles defective in protein-protein interactions. Methods Mol. Biol. 812, 209-223.
  14. Kopan, R., and Ilagan, M.X. (2009). The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216-233. https://doi.org/10.1016/j.cell.2009.03.045
  15. Kovall, R.A., and Blacklow, S.C. (2010). Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr. Topics Dev. Biol. 92, 31-71.
  16. Kovall, R.A., and Hendrickson, W.A. (2004). Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. EMBO J. 23, 3441-3451. https://doi.org/10.1038/sj.emboj.7600349
  17. Kumar, A., Huh, T.L., Choe, J., and Rhee, M. (2017). Rnf152 is essential for NeuroD expression and Delta-notch signaling in the zebrafish embryos. Mol. Cells 40, 945-953.
  18. Mikami, S., Kanaba, T., Takizawa, N., Kobayashi, A., Maesaki, R., Fujiwara, T., Ito, Y., and Mishima, M. (2014). Structural insights into the recruitment of SMRT by the corepressor SHARP under phosphorylative regulation. Structure 22, 35-46. https://doi.org/10.1016/j.str.2013.10.007
  19. Mottis, A., Mouchiroud, L., and Auwerx, J. (2013). Emerging roles of the corepressors NCoR1 and SMRT in homeostasis. Genes Dev. 27, 819-835. https://doi.org/10.1101/gad.214023.113
  20. Nam, Y., Sliz, P., Song, L., Aster, J.C., and Blacklow, S.C. (2006). Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124, 973-983. https://doi.org/10.1016/j.cell.2005.12.037
  21. Oberoi, J., Fairall, L., Watson, P.J., Yang, J.C., Czimmerer, Z., Kampmann, T., Goult, B.T., Greenwood, J.A., Gooch, J.T., Kallenberger, B.C., et al. (2011). Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nat. Struct. Mol. Biol. 18, 177-184. https://doi.org/10.1038/nsmb.1983
  22. Oswald, F., Tauber, B., Dobner, T., Bourteele, S., Kostezka, U., Adler, G., Liptay, S., and Schmid, R.M. (2001). p300 acts as a transcriptional coactivator for mammalian Notch-1. Mol. Cell. Biol. 21, 7761-7774. https://doi.org/10.1128/MCB.21.22.7761-7774.2001
  23. Oswald, F., Kostezka, U., Astrahantseff, K., Bourteele, S., Dillinger, K., Zechner, U., Ludwig, L., Wilda, M., Hameister, H., Knochel, W., et al. (2002). SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. EMBO J. 21, 5417-5426. https://doi.org/10.1093/emboj/cdf549
  24. Pajerowski, A.G., Nguyen, C., Aghajanian, H., Shapiro, M.J., and Shapiro, V.S. (2009). NKAP is a transcriptional repressor of notch signaling and is required for T cell development. Immunity 30, 696-707. https://doi.org/10.1016/j.immuni.2009.02.011
  25. Tabaja, N., Yuan, Z., Oswald, F., and Kovall, R.A. (2017). Structurefunction analysis of RBP-J-interacting and tubulin-associated (RITA) reveals regions critical for repression of Notch target genes. J. Biol. Chem. 292, 10549-10563. https://doi.org/10.1074/jbc.M117.791707
  26. VanderWielen, B.D., Yuan, Z., Friedmann, D.R., and Kovall, R.A. (2011). Transcriptional repression in the Notch pathway: thermodynamic characterization of CSL-MINT (Msx2-interacting nuclear target protein) complexes. J. Biol. Chem. 286, 14892-14902. https://doi.org/10.1074/jbc.M110.181156
  27. Wacker, S.A., Alvarado, C., von Wichert, G., Knippschild, U., Wiedenmann, J., Clauss, K., Nienhaus, G.U., Hameister, H., Baumann, B., Borggrefe, T., et al. (2011). RITA, a novel modulator of Notch signalling, acts via nuclear export of RBP-J. EMBO J. 30, 43-56. https://doi.org/10.1038/emboj.2010.289
  28. Wilson, J.J., and Kovall, R.A. (2006). Crystal structure of the CSLNotch-Mastermind ternary complex bound to DNA. Cell 124, 985-996. https://doi.org/10.1016/j.cell.2006.01.035
  29. Yuan, Z., Praxenthaler, H., Tabaja, N., Torella, R., Preiss, A., Maier, D., and Kovall, R.A. (2016). Structure and function of the Su(H)-Hairless repressor complex, the major antagonist of notch signaling in Drosophila melanogaster. PLoS Biol. 14, e1002509. https://doi.org/10.1371/journal.pbio.1002509